/MAT/LAW93 (ORTH_HILL) or (CONVERSE)

Block Format Keyword This law describes the orthotropic elastic behavior material with Hill plasticity and is applicable only to shell elements and must be used with property set /PROP/TYPE11 (SH_SANDW), /PROP/TYPE17 (STACK), /PROP/TYPE51 and /PROP/PCOMPP.

Format

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
/MAT/LAW93/mat_ID/unit_ID or /MAT/ORTH_HILL/mat_ID/unit_ID or /MAT/CONVERSE/mat_ID/unit_ID/
mat_title
ρ i                
E11 E22 E33 G12 ν 12
G13 G23 ν 13 ν 23  
N L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGobWaaS baaSqaaiaadYeaaeqaaaaa@382F@        
Curve input for yield if N L 0 MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGobWaaS baaSqaaiaadYeaaeqaaOGaeyiyIKRaaGimaaaa@3ABA@ , define N L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGobWaaS baaSqaaiaadYeaaeqaaaaa@382F@ plasticity function per line:
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
fct_IDi   Fscalei ε ˙ i        
Parameter input for yield:
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
σ y QR1 CR1 QR2 CR2
Lankford parameter for HILL critieria:
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
R11 R22 R12    
R33 R13 R23    

Definitions

Field Contents SI Unit Example
mat_ID Material identifier

(Integer, maximum 10 digits)

 
unit_ID Unit Identifier

(Integer, maximum 10 digits)

 
mat_title Material title

(Character, maximum 100 characters)

 
ρ i Initial density

(Real)

[ kg m 3 ]
E11 Young’s modulus in direction 11

(Real)

[ Pa ]
E22 Young’s modulus in direction 22

(Real)

[ Pa ]
E33 Young’s modulus in direction 33

(Real)

[ Pa ]
G12 Shear modulus in direction 12

(Real)

[ Pa ]
G13 Shear modulus in direction 13

(Real)

[ Pa ]
G23 Shear modulus in direction 23

(Real)

[ Pa ]
ν 12 Poisson's ratio 12

(Real)

 
ν 13 Poisson's ratio 13

(Real)

 
ν 23 Poisson's ratio 23

(Real)

 
N L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGobWaaS baaSqaaiaadYeaaeqaaaaa@382F@ Number of yield function.  
fct_IDi Plasticity curves ith function identifier (i=1, N L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGobWaaS baaSqaaiaadYeaaeqaaaaa@382F@ )

(Integer)

 
Fscalei Scale factor for ith function (i=1, N L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGobWaaS baaSqaaiaadYeaaeqaaaaa@382F@ )

Default = 1.0 (Real)

 
ε ˙ i Strain rate for ith function (i=1, N L MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbbG8FasPYRqj0=yi0dXdbba9pGe9xq=JbbG8A8frFve9 Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaeaaeaaakeaacaWGobWaaS baaSqaaiaadYeaaeqaaaaa@382F@ )

(Real)

[ 1 s ]
σ y Initial yield stress

Default = 1E30 (Real)

[ Pa ]
QR1 Parameter of hardening

Default = 0.0 (Real)

 
CR1 Parameter of hardening

Default = 0.0 (Real)

 
QR2 Parameter of hardening

Default = 0.0 (Real)

 
CR2 Parameter of hardening

Default = 0.0 (Real)

 
R11 Lankford parameter in direction 11

Default = 1E30 (Real)

 
R22 Lankford parameter in direction 22

Default = 1E30 (Real)

 
R33 Lankford parameter in direction 33

Default = 1E30 (Real)

 
R12 Lankford parameter in direction 12

Default = 1E30 (Real)

 
R13 Lankford parameter in direction 13

Default = 1E30 (Real)

 
R23 Lankford parameter in direction 23

Default = 1E30 (Real)

 

Example (Curve Input)

#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
                  kg                  mm                  ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#-  2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW93/1/1
plastic
#              RHO_I
            1.111E-6
#                E11                 E22                 E33                 G12                Nu12
               1.111               1.111               1.111               1.111                0.11
#                G13                 G23                Nu13                Nu23
               1.111               1.111                0.11                0.11
#    Nrate
         2
#   Ifunct                        Yscale              Epsdot
       141                         0.001                 0.1
       141                         0.002                 0.2	   
#               SigY                 QR1                 CR1                 QR2                 CR2
                 0.0                 0.0                 0.0                 0.0                 0.0
#                R11                 R22                 R12
                 .11                 .11                 .11
#                R33                 R13                 R23
                 .11                 .11                 .11
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/141
plasticity curve
#                  X                   Y
               0.000           26.900000
            0.005000           46.700000
            0.015000           69.100000
            0.025000           84.300000
            0.035000           94.500000
            0.045000           101.20000
            0.055000           106.10000
            0.065000           110.00000
            0.075000           113.60000
            0.085000           117.10000
            0.095000           120.50000
            0.105000           124.00000
            0.112000           126.30000
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|

Comments

  1. The yield stress is defined by a user function and the yield stress is compared to equivalent stress in the orthotropic frame.(1)
    σ e q = ( G + H ) σ 1 2 + ( F + H ) σ 2 2 2 H σ 1 σ 2 + 2 N σ 12
    Where,(2)
    F = 1 2 ( 1 R 22 2 + 1 R 33 2 1 R 11 2 )
    (3)
    G = 1 2 ( 1 R 33 2 + 1 R 11 2 1 R 22 2 )
    (4)
    H = 1 2 ( 1 R 22 2 + 1 R 11 2 1 R 33 2 )
    (5)
    N = 3 2 R 12 2
    Two different ways (parameter input or curve input) to describe the Yield criteria in LAW93. The yield will be compared with equivalent stress σ e q MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaeq4Wdm3aaS baaSqaaiaadwgacaWGXbaabeaaaaa@39C6@ as:(6)
    Φ = σ e q [ σ y + R ( ε p ) ]
    • For parameter input, the hardening can be defined as:(7)
      R ( ε p ) = i 2 Q R i ( 1 e C R i ε p ) MathType@MTEF@5@5@+= feaagKart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOuaiaacI cacqaH1oqzdaWgaaWcbaGaamiCaaqabaGccaGGPaGaeyypa0ZaaabC aeaacaWGrbGaamOuamaaBaaaleaacaWGPbaabeaakiabgwSixpaabm aabaGaaGymaiabgkHiTiaadwgadaahaaWcbeqaaiabgkHiTiaadoea caWGsbWaaSbaaWqaaiaadMgaaeqaaSGaeyyXICTaeqyTdu2aaSbaaW qaaiaadchaaeqaaaaaaOGaayjkaiaawMcaaaWcbaGaamyAaaqaaiaa ikdaa0GaeyyeIuoaaaa@521D@
    • Using curve input, the parameter input will be ignored
      The Yield can be defined with using stress vs plastic strain curve taking account the strain rate effect. When the stress vs strain curves are defined this is the default way for defining the hardening.
      1. If ε ˙ ε ˙ n , the yield is interpolated between f n and f n 1 .
      2. If ε ˙ ε ˙ 1 function, f 1 is used.
      3. Above ε ˙ max , yield is extrapolated.


        Figure 1.