/MAT/LAW36 (PLAS_TAB)
Block Format Keyword This law models an isotropic elasto-plastic material using user-defined functions for the work-hardening portion of the stress-strain curve (for example, stress vs. plastic strain) for different strain rates.
Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/MAT/LAW36/mat_ID/unit_ID or /MAT/PLAS_TAB/mat_ID/unit_ID | |||||||||
mat_title | |||||||||
E | |||||||||
Nfunct | Fsmooth | Chard | Fcut | VP | |||||
fct_IDp | Fscale | fct_IDE | Einf | CE |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
fct_ID1 | fct_ID2 | fct_ID3 | fct_ID4 | fct_ID5 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
Fscale1 | Fscalev | Fscale3 | Fscale4 | Fscale5 |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
Definitions
Field | Contents | SI Unit Example |
---|---|---|
mat_ID | Material identifier (Integer, maximum 10 digits) |
|
unit_ID | Unit Identifier (Integer, maximum 10 digits) |
|
mat_title | Material title (Character, maximum 100 characters) |
|
Initial density (Real) |
||
E | Young's modulus (Real) |
|
Poisson's
ratio (Real) |
||
Failure plastic strain Default = 1030 (Real) |
||
Tensile failure strain at which stress
starts to reduce Default = 1030 (Real) |
||
Maximum tensile failure strain at which
the stress in element is set to zero Default = 2.0 x 1030 (Real) |
||
Nfunct | Number of functions (
) (Integer) |
|
Fsmooth | Smooth strain rate option flag
(Integer) |
|
Chard | Hardening coefficient
(Real) |
|
Fcut | Cutoff frequency for strain rate
filtering Only available for shell and solid elements. Default = 1.0 x 1030 (Real) |
|
VP | Strain rate choice flag
(Integer) |
|
Tensile strain for element
deletion Default = 3.0 x 1030 (Real) |
||
fct_IDp | Yield factor vs. pressure function 7 Default = 0 (Integer) |
|
Fscale | Scale factor for yield factor in fct_IDp Default = 1.0 (Real) |
|
fct_IDE | Function identifier for the scale factor
of Young modulus, when Young modulus is function of the plastic strain
: Default = 0: in this case the evolution of Young depends on Eint and CE. (Integer) |
|
Eint | Saturated Young's modulus for infinitive
plastic strain (Real) |
|
CE | Parameter for Young's modulus
evolution (Real) |
|
fct_ID1 | Yield stress function identifier 1
corresponding to strain rate
(Integer) |
|
fct_ID2 | Yield stress function identifier 2
corresponding to strain rate
(Integer) |
|
fct_ID3 | Yield stress function identifier 3
corresponding to strain rate
(Integer) |
|
fct_ID4 | Yield stress function identifier 4
corresponding to strain rate
(Integer) |
|
fct_ID5 | Yield stress function identifier 5
corresponding to strain rate
(Integer) |
|
Fscale1 | Scale factor for ordinate (stress) in
fct_ID1 Default = 1.0 (Real) |
|
Fscale2 | Scale factor for ordinate (stress) in
fct_ID2 Default = 1.0 (Real) |
|
Fscale3 | Scale factor for ordinate (stress) in
fct_ID3 Default = 1.0 (Real) |
|
Fscale4 |
Scale factor for ordinate (stress) in fct_ID4 Default = 1.0 (Real) |
|
Fscale5 | Scale factor for ordinate (stress) in
fct_ID5 Default = 1.0 (Real) |
|
If VP
=0 total strain rate for
fct_ID1 If VP =1 plastic strain rate for fct_ID1 (Real) |
||
If VP
=0 total strain rate for
fct_ID2 If VP =1 plastic strain rate for fct_ID2 (Real) |
||
If VP
=0 total strain rate for
fct_ID3 If VP =1 plastic strain rate for fct_ID3 (Real) |
||
If VP
=0 total strain rate for
fct_ID4 If VP =1 plastic strain rate for fct_ID4 (Real) |
||
If VP
=0 total strain rate for
fct_ID5 If VP =1 plastic strain rate for fct_ID5 (Real) |
Example (Aluminum)
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
g mm ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/PLAS_TAB/1/1
Aluminium_example
# RHO_I
.0027 0
# E Nu Eps_p_max Eps_t Eps_m
60400 .33 0 0 0
# N_funct F_smooth C_hard F_cut Eps_f VP
14 0 0 0 0 0
# fct_IDp Fscale Fct_IDE EInf CE
0 0 0 0 0
# func_ID1 func_ID2 func_ID3 func_ID4 func_ID5
1 2 3 4 5
6 7 8 9 10
11 12 13 14
# Fscale_1 Fscale_2 Fscale_3 Fscale_4 Fscale_5
1 1.2 1.4 1.6 1.9
10 10.2 10.4 10.6 10.9
20 20.2 20.4 20.6
# Eps_dot_1 Eps_dot_2 Eps_dot_3 Eps_dot_4 Eps_dot_5
0 20 30 40 50
110 120 130 140 150
210 220 230 240
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 3. FUNCTIONS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1
function_36
# X Y
0 90
2.5E-4 100
.001 104
.009 121
.017 136
.021 143
.036 156
.045 162
.055 165
.072 170
.075 170
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/2
function_36
# X Y
0 90
2.5E-4 100
.001 104
.009 121
.017 136
.021 143
.036 156
.045 162
.055 165
.072 170
.075 170
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/3
function_36
# X Y
0 90
2.5E-4 100
.001 104
.009 121
.017 136
.021 143
.036 156
.045 162
.055 165
.072 170
.075 170
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/4
function_36
# X Y
0 90
2.5E-4 100
.001 104
.009 121
.017 136
.021 143
.036 156
.045 162
.055 165
.072 170
.075 170
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/5
function_36
# X Y
0 90
2.5E-4 100
.001 104
.009 121
.017 136
.021 143
.036 156
.045 162
.055 165
.072 170
.075 170
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/6
function_36
# X Y
0 90
2.5E-4 100
.001 104
.009 121
.017 136
.021 143
.036 156
.045 162
.055 165
.072 170
.075 170
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/7
function_36
# X Y
0 90
2.5E-4 100
.001 104
.009 121
.017 136
.021 143
.036 156
.045 162
.055 165
.072 170
.075 170
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/8
function_36
# X Y
0 90
2.5E-4 100
.001 104
.009 121
.017 136
.021 143
.036 156
.045 162
.055 165
.072 170
.075 170
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/9
function_36
# X Y
0 90
2.5E-4 100
.001 104
.009 121
.017 136
.021 143
.036 156
.045 162
.055 165
.072 170
.075 170
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/10
function_36
# X Y
0 90
2.5E-4 100
.001 104
.009 121
.017 136
.021 143
.036 156
.045 162
.055 165
.072 170
.075 170
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/11
function_36
# X Y
0 90
2.5E-4 100
.001 104
.009 121
.017 136
.021 143
.036 156
.045 162
.055 165
.072 170
.075 170
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/12
function_36
# X Y
0 90
2.5E-4 100
.001 104
.009 121
.017 136
.021 143
.036 156
.045 162
.055 165
.072 170
.075 170
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/13
function_36
# X Y
0 90
2.5E-4 100
.001 104
.009 121
.017 136
.021 143
.036 156
.045 162
.055 165
.072 170
.075 170
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/14
function_36
# X Y
0 90
2.5E-4 100
.001 104
.009 121
.017 136
.021 143
.036 156
.045 162
.055 165
.072 170
.075 170
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
/END
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
Comments
- The first point of yield stress functions (plastic strain vs stress) should have a plastic strain value of zero. If the last point of the first (static) function equals 0 in stress, default value of is set to the corresponding value of .
- Element deletion:
- Once (plastic strain) reaches , in one integration point, the element is deleted.
- If
reaches
, the stress is reduced using the following relation:
(1) - If (largest principal strain) reaches ( ), the stress in element is reduced to 0 (but the element is not deleted).
- Once (largest principal strain) reaches (maximum tensile failure strain), the element is deleted.
- The kinematic hardening model is not available in global formulation (N=0 in shell property keyword) that is, hardening is fully isotropic.
- In case of kinematic hardening and strain rate dependency, the yield stress depends on the strain rate.
- Strain rate filtering is used to smooth strain rates.
- The first function in fct_ID1 is used for strain rate values from 0 to its corresponding strain rate, strain rate 1. However, the last function used in the model does not extend to the maximum strain rate; for higher strain rates, a linear extrapolation will be applied. This could lead to instability and/or unusual deformation. This instability can be overcome by repeating the stress strain curve, corresponding to the last strain rate, again with a much higher strain rate.
- fct_IDp is used to distinguish the behavior in tension and compression for certain materials (pressure dependent yield). This is available for both shell and solid elements. The effective yield stress is then obtained by multiplying the nominal yield stress by the yield factor corresponding to the actual pressure.
- If , the yield stress is interpolated between and .
- If , function is used.
- Above
, yield stress is extrapolated.
Where,
- Total strain rate for VP =0
- Plastic strain rate for VP =1
- Separate functions must be defined for different strain rates.
- Strain rate values must be given in strictly ascending order.
- The evolution of Young's modulus:
- If fct_IDE > 0, the curve defines a scale factor for Young modulus evolution
with equivalent plastic strain, which means the Young Modulus is scaled by the function
:
(2) The initial value of the scale factor should be equal to 1 and it decreases.
- If fct_IDE = 0, the Young Modulus is calculated as:
(3) Where, and are respectively the initial and asymptotic value of Young's modulus, and is the accumulated equivalent plastic strain.Note: If fct_IDE = 0 and = 0, Young modulus is kept constant.
- If fct_IDE > 0, the curve defines a scale factor for Young modulus evolution
with equivalent plastic strain, which means the Young Modulus is scaled by the function
: