/MAT/LAW88
Block Format Keyword This law represents the behavior of a hyperelastic material with strain rate effects. This law is generally used to model incompressible rubbers, polymers, foams, and elastomers. It is defined by a family of stress vs strain curves at different strain rates.
Unloading can be represented using an unloading function or by providing hysteresis and shape factor inputs to a damage model based on energy. This law is only compatible with solid elements.
Format
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
/MAT/LAW88/mat_ID/unit_ID | |||||||||
mat_title | |||||||||
K | Fcut | Fsmooth | NL | ||||||
fct_IDunL | FscaleunL | Hys | Shape | Tension |
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|
fct_IDLi | FscaleLi |
Definitions
Field | Contents | SI Unit Example |
---|---|---|
mat_ID | Material identifier (Integer, maximum 10 digits) |
|
unit_ID | Unit Identifier (Integer, maximum 10 digits) |
|
mat_title | Material title (Character, maximum 100 characters) |
|
Initial density (Real) |
||
Poisson ratio For incompressible materials 0.495 is maximum value. (Real) |
||
K | Bulk modulus (Real) |
|
Fcut | Cutoff frequency for strain rate
filtering Default = 1030 (Real) |
|
Fsmooth | Smooth strain rate option flag
(Integer) |
|
NL | Number of loading stress strain
curve (Integer) |
|
fctunL | Unloading engineering stress vs
engineering strain function identifier. 3 (Integer) |
|
FscaleunL | Unloading function scale
factor Default = 1.0 (Real) |
|
Hys | Hysteresis unloading factor. Ignore if,
unloading function is used. 3 0.0 ≤ Hys ≤ 1.0 Default = 0.0 (Real) |
|
Shape | Shape factor. Ignored if, unloading
function is used. 3 Default = 1.0 (Real) |
|
Tension | Unloading rate effects option
flag During loading in tension or compression, the loading strain rate dependent curves are always used. For unloading, the following options are available:
|
|
fct_IDLi | Loading function identifier defining
engineering stress vs engineering strain for ith strain rate
function. (Integer) |
|
Strain rate for ith loading
engineering stress vs engineering strain function. (Real) |
||
FscaleLi | Scale factor for ith loading
function. Default = 1.0 (Real) |
Example (Rubber)
#RADIOSS STARTER
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/UNIT/1
unit for mat
kg mm ms
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#- 2. MATERIALS:
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/MAT/LAW88/1/1
rubber
# RHO_I
1E-6
# NU K F_cut F_smooth N_L
.495 19.93 0 1
#fctID_Unl Fscale_unload HYs Shape Tension
1 1. 0. 0. 0
#fctID_l Fscale_load Eps_._load
1 1. 0.
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
/FUNCT/1
function 1
# X Y
-8.51E-01 -3.55E+01
-7.76E-01 -1.10E+01
-7.02E-01 -4.83E+00
-6.01E-01 -2.06E+00
-5.00E-01 -1.05E+00
-4.05E-01 -5.98E-01
-3.04E-01 -3.33E-01
0.00E+00 0.00E+00
4.05E-01 1.53E-01
8.50E-01 2.37E-01
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
#ENDDATA
#---1----|----2----|----3----|----4----|----5----|----6----|----7----|----8----|----9----|---10----|
Comments
- This model utilizes an Ogden material formulation. Material parameters are directly derived from the input stress strain curves from uniaxial tests for different strain rates. The material is assumed to be nearly incompressible with Poisson’s ratio = 0.495.
- Strain rate effects can be modelled by including loading engineering stress strain test data at different strain rates fct_IDLi. This can be easier than calculating viscous parameters for traditional hyperelastic material models.
- Unloading can be represented using an
unloading function, FscaleunL, or by
providing hysteresis, Hys, and
shape factor, Shape,
inputs to a damage model based on energy.When using the damage model, the loading curves are used for both loading and unloading and the unloading stress tensor is reduced by:
(1) with(2) Where,- Current energy
- Maximum energy corresponding to the quasi-static behavior
If the unloading function, FscaleunL, is entered, unloading is defined based on the unloading flag, Tension.