/H3D/NODA

Engine Keyword Generate H3D contour output results for nodes.

Format

/H3D/NODA/Keyword3/Keyword4

#optional next line(s) that lists the parts to save results for.

part_ID1... part_IDN

Example

Node velocity vectors
/H3D/NODA/VEL
Contact pressure for only parts IDs 356 and 293.
/H3D/NODA/PCONT
356 293

Definitions

Data Description SI Unit Example
Keyword3 Output types. 3  
Keyword4 Output types. 3  
part_IDN Optional list of part IDs for which results will be output  

Comments

  1. When PART IDs are listed after the /H3D/NODA line the specified results will only be output for those parts.
  2. Output can be a, scalar, vector, or tensor as defined.
    Table 1. Scalar Output
    Keyword3 Keyword4 Description
    DAMA2   Damage for TYPE2 interface. 2
    DENS   Element density extrapolated to attached nodes for 3D ALE and FVM nodes of external and internal airbag surfaces.
    DINER   Nodal inertia change 3
    DMASS   Nodal mass change 4
    DT   Nodal time step
    ENER   Element specific energy reported to node
    GPS1 P Element pressure extrapolated to node
    VONM Element von Mises stress extrapolated on node
    MASS   Nodal mass
    NDMASS   Non-diagonal mass variation (see time step control /DT/AMS) 5
    NVAR1, NVAR2, ...NVAR5   Nodal Variable 1,2 …5
    P   Element pressure extrapolated to attached nodes for 3D ALE and FVM nodes of external and internal airbag surfaces.
    SCHLI   Nodal Schlieren
    STIF   Nodal translational stiffness
    STIFR   Nodal rotational stiffness
    TEMP   Nodal temperature for thermal exchange or element temperature extrapolated to attached nodes for 3D ALE and FVM nodes of external and internal airbag surfaces.
    VFRAC   Nodal Volumetric Fraction where the element volumetric fraction extrapolated to attached nodes in LAW37 and LAW51.
    ZVFRAC   Nodal Volumetric Fraction.
    Table 2. Vector Output
    Data Keyword4 Description
    ACC   Node acceleration
    CLUSTER FORCE

    MOMENT

    Spotweld /CLUSTER force or Moment vector in global coordinates
         
    CONT   Node contact forces
    CONT2   Tied interface contact force (INTER/TYPE2)
    DIS   Node displacement
    DROT   Node rotation

    Idrot= 1 must also be set in /IOFLAG; otherwise, rotational degree of freedom (DOF) are not computed and this option is ignored.

    FEXT   External force
    FINT   Internal force
    FOPT   Forces or Moments for rigid bodies, rigid walls and sections.
    FRES   Residual force (FEXTFINT)
    FREAC   Reaction forces for imposed velocities, displacements, accelerations and boundary conditions.
    MREAC   Reaction moments for imposed velocities, displacements, accelerations and boundary conditions.
    FVEL   Gas velocity vectors for fluid flow in Finite Volume Method monitored volume, /FVMBAG1
    PCONT   Normal or tangential contact pressure 6
    VEL   Node translational velocity
    Table 3. Tensor Output
    Data Keyword4 Description
    GPS   Mean nodal stress calculated from the element shape functions 7

    Only available with solids elements with /PROP/TYPE6 (SOL_ORTH), /PROP/TYPE14 (SOLID), /PROP/TYPE20 (TSHELL), /PROP/TYPE21 (TSH_ORTH) and /PROP/TYPE22 (TSH_COMP)

    GPS1   Mean stress of elements connected to node. Only available /BRICK and /TETRA4.

    The stress of the corner node is extrapolated from mean stress at integration point in all elements which are connected to this node.

    GPS2   Mean (using relative element volume) stress of elements connected to node. Only available /BRICK and /TETRA4.

    The stress of corner node is extrapolated from stress at integration point.

  3. DAMA2 damage percentages for /INTER/TYPE2 with rupture (Spotflag = 20, 21, or 22):(1)
    min ( 100 , 100 n o r m a l r e l a t i v e d i s p l a c e m e n t max n o r m a l r e l a t i v e d i s p l a c e m e n t )
    (2)
    min ( 100 , 100 tangent r e l a t i v e d i s p l a c e m e n t max t a n g e n t r e l a t i v e d i s p l a c e m e n t )
  4. (3)
    D I N E R = ( I n e r t i a ( t ) I 0 I 0 )
    Where,
    I0
    Nodal inertia at the beginning of the current run and Inertia(t) is the current inertia
  5. D M A S S = ( Δ M M 0 ) with Δ M = M M 0
    Where,
    M0
    Nodal mass at the beginning of the restart
    M
    Current mass
    Note: Δ M is re-set to 0 at the beginning of each restart file.
  6. When /DT/AMS is used, a non-diagonal mass matrix is used to increase the time step. On each line of the mass matrix, the lumped mass M0 is increased with some value Δ M which is compensated with non-diagonal terms such that the total mass to remain constant.(4)
    N D M A S = ( Δ M M 0 )
  7. For PCONT, two nodal vectors are output:(5)
    P n = F n S , P t = F t S
    Where,
    Fn
    Sum of normal contact forces applied to the node
    Ft
    Sum of tangential contact forces applied to the node
    S
    Extrapolated surface of segments connected to the node
  8. The stress of the corner node is computed using bilinear extrapolation of the shape function from stress at integration points of each element which are connected to this node. For thick shell properties, bilinear extrapolation is computed using integration points of upper and lower layers.