

altairhyperworks.com

HS-4410: Readmac Delegate for Mode Tracking

In this tutorial you will learn how to use the Readmac delegate for mode tracking applications. This will be set up as an optimization problem with the objective of maximizing the first natural frequency of a simple rectangular section beam.

Bar cross-section of the beam element from hyperbeam

Model Files

The files used in this tutorial can be found in <hst.zip>/HS-4410/. Copy the files from this directory to your working directory.

Exercise

Step 1: Perform the Study Setup

- 1. Start HyperStudy.
- 2. To start a new study, click **File > New** from the menu bar, or click \square on the toolbar.
- 3. In the **HyperStudy Add** dialog, enter a study name, select a location for the study, and click **OK**.
- 4. Go to the **Define models** step.

- 5. Add a Parameterized File model.
 - a. From the Directory, drag-and-drop the Bar beam.tpl file into the work area.

b. In the Solver input file column, enter Bar_beam.fem.

This is the name of the solver input file HyperStudy writes during any evaluation.

c. In the Solver execution script column, select **OptiStruct (os)**.

6. Click Import Variables.

Two input variables are imported from the .tpl resource file.

	Active	Label	Varname	Lower Bound	Nominal	Upper Bound	Comment
1	\checkmark	DimA	m_1_varname_1	5.0000000	5.0000000	15.000000	
2		DimB	m_1_varname_2	5.0000000	10.000000	15.000000	

7. Go to the **Specifications** step

Step 2: Perform the Nominal run

1. In the work area, set the Mode to **Nominal Run**.

	Mode	Label	Varname	Details
1	\odot	Nominal Run	Nom	Run system at nominal values
2	0	System Bounds Check	Chk	Run system at nominal values, then lower and upper values
				Show more

- 2. Click Apply.
- 3. Go to the **Evaluate** step.
- 4. Click **Evaluate Tasks**.

An approaches /nom_1/ directory is created inside the study directory. /nom_1/run_00001/m_1 sub-directory contains the Bar_beam.h3d which is the result of the nominal run, and will be used for next approach.

5. Go to the **Define Output Responses** step.

Step 3: Create and Define Output Responses

In this step you will create three output responses that are based on elements of a single data source from the Readmac delegate.

- 1. Click the **Data Sources** tab.
- 2. Click Add Data Source.
- 3. In the File column of the data source, click (...).
- 4. In the Data Source Builder dialog, define the data source and click **OK**.
 - a. In the File field, navigate to \nom_1\run_00001\m_1\ inside your working directory and select Bar_beam.h3d.
 - b. Set Tool to Modal Assurance Criteria.
 - c. In the References section, File field, navigate to \nom_1\run_00001\m_1\ inside your working directory and select Bar beam.h3d.
 - d. Set Subcase to Subcase 1 (loadstep1).
 - e. Set Type to Eigen Mode (Grids).
 - f. For Mode, select **Reference mode index = 1**.
 - g. In the Target section, leave the settings set to their default values.

The default Target settings adopt the same Type and Subcase as the Reference settings, which enables HyperStudy to search all modes for the best match in the reference file.

Note: The file source uses a relative position of the Bar_beam.h3d file, and updates for successive run numbers. However, the reference file uses an absolute path and points to the given file source throughout all the runs.

🔬 Data S	iource Builder: Data Source 1 (ds_1) - HyperStudy — 🛛 🛛 🗙					
File:	\HS-4410\approaches\nom_1\run_00001\m_1\Bar_beam.h3d					
File Reference: run-file:///m_1/Bar_beam.h3d Tool: (
Reference File:	study-file:///approaches/nom_1/run00001/m_1/Bar_beam.h3d					
Subcase: Type:	Subcase 1 (loadstep1) Eigen Mode (Grids)					
Mode:	Reference mode index = 1					
Target						
Subcase:	Reference subcase					
Туре:	Reference type 👻					
Modes:	All modes -					
	OK Cancel					

5. Click **Evaluate**.

The Value field for ds_1 displays a row vector of three elements.

- 6. Click the **Define Output Responses** tab.
- 7. Create and define output responses.
 - a. Click Add Output Responses to add three output responses.
 - b. Label the output responses Freq of best matched mode, MAC of matched mode, and ID of matched mode.
 - c. In the Expression field, enter the following expressions for each output response.
 - Freq of best matched mode = ds_1[0]
 - MAC of matched mode = ds_1[1]
 - ID of matched mode = ds_1[2]
- 8. Click **Evaluate** to extract the output response values.

	Active	Label	Varname	Expression	Value	Comment
1	\checkmark	Freq of best matched mode	r_1	ds_1[0]	16.697069	
2	\checkmark	MAC of matched mode	r_2	ds_1[1]	1.0000000	
3	\checkmark	ID of matched mode	r_3	ds_1[2]	1.0000000	

Step 4: Run an Optimization

- 1. In the Explorer, right-click and select **Add** from the context menu.
- 2. In the Add HyperStudy dialog, select Optimization and click OK.
- 3. Go to the Select Output Responses step.
- 4. Apply an objective on the Freq of best matched mode output response.
 - a. In the Objectives column for Freq of best matched mode, click •.
 - b. In the pop-up window, set Type to **Maximize** and click **OK**.

	Active	Label	Varname	Objectives	Constraints	Evaluate From	Expression
1	\checkmark	Freq of best matched mode	r_1	Maximize	•	f() Expression	ds_1[0]
2	\checkmark	MAC of matched mode	r_2	0	0	f0 Expression	ds_1[1]
3	\checkmark	ID of matched mode	r_3	0	Θ	f0 Expression	ds_1[2]

- 5. Click **Apply**.
- 6. Go to the **Specifications** step.
- 7. In the work area, set the Mode to Adaptive Response Surface Method (ARSM).
- 8. Go to the **Evaluate** step.
- 9. Click Evaluate Tasks.

10. Click the **Iteration History** tab.

Notice: The frequency of best matched mode in the target file is maximized to 50.067 from 33.388. The readmac function that was running the background was able to track the ID of the matched mode in the target .h3d file. The mode ID in the converged solution switched from 1 to 2.

	¶+ DimA	"∐+ DimB	🕼 Freq of best matched mode	🕼 MAC of matched mode	🕼 ID of matched mode	₩ Objective 1	Iteration I
1	5.0000000	10.000000	16.697069	1.0000000	1.0000000	16.697069	1
2	5.8250000	10.000000	19.468361	1.0000000	1.0000000	19.468361	2
3	5.0000000	11.650000	16.697069	1.0000000	1.0000000	16.697069	3
4	5.7500000	10.000000	19.201250	1.0000000	1.0000000	19.201250	4
5	6.6987500	10.000000	22.372990	1.0000000	1.0000000	22.372990	5
6	7.8997306	11.050000	26.378981	1.0000000	1.0000000	26.378981	6
7	9.5925301	10.840651	32.019798	1.0000000	1.0000000	32.019798	7
8	12.049373	10.549620	40.228260	1.0000000	2.0000000	40.228260	8
9	15.000000	9.7387644	50.067039	0.9999999	2.0000000	50.067039	9
10	15.000000	10.761335	50.067039	0.9999999	2.0000000	50.067039	10
11	15.000000	10.248924	50.067039	0.9999999	2.0000000	50.067039	11

