

altairhyperworks.com

HS-4230: Optimization Study with Discrete Variables

In this tutorial you will learn how to use discrete variables. The sample base input template plate.tpl can be found in <hst.zip>/HS-4230/and copied to your working directory.

The objective of this tutorial is to maximize the minimum frequency of the first five modes of a plate. The input variables are the thickness of each of the three components, defined in the input deck via the PSHELL card. The thickness should be between 0.05 and 0.15; the initial thickness within the files is 0.1. The optimization type is size. Furthermore, optimum design should have input variables from a discrete set of 0.05, 0.08, 0.11, and 0.14 for all three thicknesses. By default, HyperStudy will add the values from the lower and upper bounds to this set. Hence the resulting set is 0.05, 0.08, 0.11, 0.14, and 0.15. Delete any of these values if needed.

Figure 1: Double Symmetric Plate Model

Step 1: Perform the Study Setup

- 1. Start HyperStudy.
- 2. To start a new study, click *File* > *New* from the menu bar, or click *I* on the toolbar.
- 3. In the **HyperStudy Add** dialog, enter a study name, select a location for the study, and click **OK**.
- 4. Go to the **Define models** step.
- 5. Add a Parameterized File model.

a. From the **Directory**, drag-and-drop the plate.tpl file into the work area.

Explorer 🚼 D	irectory			🦨 Define Models
Name	Size	Туре	Date Modif	
4 퉬 C:\HS-4230				Add Model 🔛 Remove Model
🐇 study_lock.xml	858 bytes	Study Lock	7/3/2017 1:	Active Label Varname Model Typ
🔳 plate.tpl	74 KB	tpl File	6/15/2017 5	Active Laber Vallance Model typ
▷ 퉬 _usr		Settings Folder	7/3/2017 1:	
Study_1.xml	3 KB	xml File	7/3/2017 1:	plate.tpl
				Ť

- b. In the **Solver input file** column, enter plate.fem. This is the name of the solver input file HyperStudy writes during any evaluation.
- c. In the **Solver execution script** column, select **OptiStruct (os)**.

	Active	Label	Varname		Model Type	Resource		Solver input file	Solver execution script	Solver input argument	its
1	V	Model 1	m_1	{}	Parameterized File	C://HS-4410/plate.tpl	ABC ()	plate.fem	OptiStruct (os)	\${file}	0

- 6. Click *Import Variables*. Three input variables are imported from the plate.tpl file.
- 7. Go to the **Define Input Variables** step.
- 8. Click the *Modes* tab.
- 9. In the **Mode** column of all three input variables, select **Discrete**.

	Active	Label	Varname	Model Parameter	Model Type	Data Type	Mode	Values	Distribution Role
1	1	Property 21	m_1_TH1	m_1.TH1	{ } Parameterized File	Real 🔻	Discrete	0.1, 0.1	L ← Design
2	1	Property 22	m_1_TH2	m_1.TH2	A Parameterized File	Real 🔻	Discrete	0.1, 0.1	∐ ← Design
3	V	Property 23	m_1_TH3	m_1.TH3	A Parameterized File	Real 🔻	Discrete	0.1, 0.1	← Design
							Continuous		
							Discrete		
							Categorical		

- 10. In the Values column of Property 21, click ***.
- 11. Click Step Size, enter 0.03, and click Set.

🛨 Add Row	🔀 Remov	e Row	1 Insert Row	Paste
1 0.0500000				
2 0.0800000				
3 0.1100000				
4 0.1400000				
5 0.1500000				
Lower Boun	nd	Nominal	Upp	er Bound
0.0500000	0.100	0000	0.1500000	
Set Steps				
Number of P	oints: 2			Set
Step Size:	0.03			Set
		ОК	Cancel	Apply

- 12. Click Apply.
- 13. Click **OK**.
- 14. Repeat steps 10 through 13 for **Property 22** and **Property 23**.
- 15. Go to the **Specifications** step.

Step 2: Perform the Nominal Run

- 1. In the work area, set the **Mode** to **Nominal Run**.
- 2. Click *Apply*.
- 3. Go to the **Evaluate** step.
- 4. Click *Evaluate Tasks*. An approaches/nom_1/ directory is created inside the study directory. The approaches/nom_1/run_00001/m_1 sub-directory contains the plate.out file, which is the result of the nominal run, and will be used in the Optimization.
- 5. Go to the **Define Output Responses** step.

Step 3: Create and Define Output Responses

- 1. Create the Freq1 output response.
 - a. From the **Directory**, drag-and-drop the plate.out file, located in approaches/nom_1/run_00001/m_1, into the work area.
 - b. In the File Assistant dialog, set the Reading technology to *Altair*® *HyperWorks*® and click *Next*.
 - c. Select **Single item in a time series**, then click **Next**.
 - d. Define the following options, and then click **Next**.
 - Set **Type** to *Frequency*.
 - Set Request to Mode 1.
 - Set Component to Value.

- e. Label the output response Freq1.
- f. Set Expression to First Element.
- g. Click *Finish*. The Freq1 output response is added to the work area.

- 2. Create the Volume output response.
 - a. From the **Directory**, drag-and-drop the plate.out file, located in approaches/nom_1/run_00001/m_1, into the work area.
 - b. In the File Assistant dialog, set the Reading technology to *Altair*® *HyperWorks*® and click *Next*.
 - c. Select **Single item in a time series**, then click **Next**.
 - d. Define the following options, and then click **Next**.
 - Set **Type** to **Volume**.
 - Set **Request** to **Volume**.
 - Set Component to Value.
 - e. Label the output response Volume.
 - f. Set **Expression** to *First Element*.
 - g. Click *Finish*. The Volume output response is added to the work area.
- 3. Click *Evaluate* to extract the output response values.

	Active Label		Varname	Expression	Value	Comment
1	v	Freq1	m_1_r_1	m_1_ds_1[0]	Not Extracted	Data Source 1
2	-	Volume	m_1_r_2	m_1_ds_2[0]	Not Extracted	Data Source 2

Step 4: Run an Optimization Study

- 1. In the **Explorer**, right-click and select **Add** from the context menu.
- 2. In the Add HyperStudy dialog, select Optimization and click OK.
- 3. Go to the **Select Input Variables** step.
- 4. Review the input variable's lower and upper bound ranges.
- 5. Go to the **Select Output Responses** step.
- 6. Click Add Objective.
- 7. In the **Add HyperStudy** dialog, add one objective.
- 8. Define the objective.
 - a. Set **Type** to *Minimize*.
 - b. Set Apply On to Volume (r_2).

	Active	Label	Varname	Туре	Apply On		Evaluate From	
1	V	Objective 1	obj_1	Minimize 🔻	Volume (r_2)	•	SOLVER -	,

- 9. Click the *Constraint* tab.
- 10. Click Add Constraint.
- 11. In the **Add HyperStudy** dialog, add one constraint.
- 12. Define the constraint.
 - a. Set **Apply On** to *Freq1* (*r*_1).
 - b. Set **Bound Type** to **>=** (greater than or equal to).
 - c. For Bound Value, enter 32.

Active	Label	Varname	Туре	Apply On		Bound Type	Bound Value
1 🗸	Constraint 1	c_1	Deterministic 👻	Freq1 (r_1)	•	>= •	32.000000

- 13. Click Apply.
- 14. Go to the **Specifications** step.
- 15. In the work area, set the Mode to Adaptive Response Surface Method (ARSM).

Note: Only the methods that are valid for the problem formulation are enabled.

- 16. Click Apply.
- 17. Go to the **Evaluate** step.
- 18. Click *Evaluate Tasks*.

Step 5: View the Iteration History of an Optimization Study

1. Click the *Iteration History* tab to monitor the progress of the Optimization iteration.

	Property 21	Property 22	Property 23	Freq1	Volume	Objective 1	Constraint 1	Iteration	StepIndex	StepMa
1	0.0500000	0.0500000	0.0500000	15.697810	116.19200	116.19200	15.697810	1	1	1
2	0.0800000	0.0500000	0.0500000	23.938540	144.24100	144.24100	23.938540	2	2	2
3	0.0500000	0.0800000	0.0500000	16.920270	137.02600	137.02600	16.920270	3	3	3
4	0.0500000	0.0500000	0.0800000	16.919700	137.02600	137.02600	16.919700	4	4	4
5	0.0800000	0.0800000	0.0800000	25.115920	185.90800	185.90800	25.115920	5	5	5
6	0.1100000	0.0500000	0.0800000	33.327920	193.12300	193.12300	33.327920	6	6	6
7	0.1100000	0.0500000	0.0500000	34.453890	172.29000	172.29000	34.453890	7	7	7

Step 6: Setup a DOE to Find the True Best Design

- 1. In the **Explorer**, right-click and select **Add** from the context menu.
- 2. In the Add HyperStudy dialog, select Doe and click OK.
- 3. Go to the **Specifications** step.
- 4. In the work area, set the **Mode** to *Full Factorial*.
- 5. Click Apply.
- 6. Go to the **Evaluate** step.
- 7. Click *Evaluate Tasks*.
- 8. Go to the **Post processing** step.
- 9. Click the *Summary* tab.
- 10. Sort run data based on the Volume (which was to be minimized) by right-clicking on the *Volume* column and selecting *Sort down* from the context menu. The lowest volume design which satisfies the constraint (frequency > 32) is the same as that found by the optimizer.

	Property 21	Property 22	Property 23	Freq1	Volume
1	0.0500000	0.0500000	0.0500000	15.697810	116.19200
2	0.0500000	0.0500000	0.0800000	16.919700	137.02600
6	0.0500000	0.0800000	0.0500000	16.920270	137.02600
26	0.0800000	0.0500000	0.0500000	23.938540	144.24100
3	0.0500000	0.0500000	0.1100000	17.302520	157.85900
7	0.0500000	0.0800000	0.0800000	19.933730	157.85900
11	0.0500000	0.1100000	0.0500000	17.302470	157.85900
27	0.0800000	0.0500000	0.0800000	24.038070	165.07400
31	0.0800000	0.0800000	0.0500000	24.039250	165.07400
51	0.1100000	0.0500000	0.0500000	34.453890	172.29000
4	0.0500000	0.0500000	0.1400000	17.073410	178.69200
8	0.0500000	0.0800000	0.1100000	21.839230	178.69200
10	0.0500000	0.1100000	0.0000000	21 020200	170 0000

Note: The DOE took 125 solver calls to exhaust all combinations, whereas the Optimization found it in 8 solver calls.