

altairhyperworks.com

HS-4220: Size Optimization Study on an Impact Simulation Using RADIOSS

This tutorial demonstrates how to perform a size optimization on a finite element model defined for RADIOSS. The RADIOSS model shown in figure 1 is run using the RADIOSS Starter and Engine. The sample base input files <code>boxbeam1_0000.rad</code> and <code>boxbeam1_0001.rad</code> can be found in <hst.zip>/HS-4220/and copied to your working directly.

The objective is to minimize the mass of the beam under the following two constraints: the internal energy must be more than 450, and the resulting reaction force must be less than 75. The input variables are the thicknesses of the four components defined in the input deck <code>boxbeam1._0000.rad</code> via the /PROP/SHELL entries. They are combined into two input variables. The thickness should be between 0.5 and 2.0; the initial thickness is 1.0. The optimization type is size.

Figure 1. Boxbeam model, undeformed.

Figure 2. Boxbeam model, deformed, t = 2.001.

Step 1: Create the Base Input Template in HyperStudy

- 1. Start HyperStudy
- 2. From the menu bar, click *Tools* > *Editor*. The *Editor* opens.
- 3. In the File field, navigate to your working directory and open the <code>boxbeam1_0000.rad</code> file.
- 4. In the Find area, enter / PROP/SHELL/1.
- 5. Click ▶ until you find /PROP/SHELL/1.
- 6. Highlight the field for thickness.
 - Tip: To assist you in selecting 20-character fields, press **CTRL** to activate the **Selector** (set to 20 characters) and then click the value. HyperStudy highlights 20 fields.

- 7. Right-click on the highlighted fields and select *Create Parameter* from the context menu.
- 8. In the Parameter varname_1 dialog, Label field, enter Upper part.
- 9. Set the Lower Bound to 0.5, the Nominal to 1.0, and the Upper Bound to 2.0.
- 10. Set the **Format** to %20.5f.
- 11. Click **OK**.

Parameter: varname_1 - HyperStudy								
Label:	Upper part							
Varname:	varname_1							
Lo	wer Bound	Nominal	Upper Bound					
	0.50000	1.00000	2.00000					
) Set	t percent:		+/-					
Set	t value:		+/-					
Format:	%20.5f		-					
		ОК Са	ancel Apply					

- 12. Find **/PROP/SHELL/2** and highlight the field for thickness.
- Assign it the same thickness as /PROP/SHELL/1 by right-clicking on the highlighted fields and selecting Attach to > varname_1 from the context menu.
- 14. Find **/PROP/SHELL/3** and highlight the field for thickness.
- 15. Right-click on the highlighted fields and select *Create Parameter* from the context menu.
- 16. In the Parameter varname_2 dialog, Label field, enter Lower part.
- 17. Set the Lower Bound to 0.5, the Nominal to 1.0, and the Upper Bound to 2.0.
- 18. Set the **Format** to %20.5f.
- 19. Click **OK**.

Parameter: varname_2 - HyperStudy								
Lab	oel:	Lower part						
Var	name:	varname_2						
	Lo	wer Bound	Nominal	Upper Bound				
		0.5	1	2				
	Set	percent:		+/-				
	Set	value:		+/-				
For	rmat:	%20.5f		-				
			ОК	Cancel Apply				

- 20. Find **/PROP/SHELL/4** and highlight the field for thickness.
- 21. Assign it the same thickness as **/PROP/SHELL/3** by right-clicking on the highlighted fields and selecting **Attach to** > *varname_2* from the context menu.
- 22. Click Save.
- 23. In the **Save Template** dialog, navigate to your working directory and save the file as boxbeam1.tpl.
- 24. Close the **Editor**.

Step 2: Optional. View the Base Input Template in TextView

- 1. Start HyperGraph.
- 2. On the Client Selector toolbar, select TextView.

- 3. From the menu bar, click *File > Open > Document*.
- 4. In the **Open Document** dialog, open the <code>boxbeam1.tpl</code> file. The text editor displays the following input variables that are defined by Templex parameter statements:

```
{parameter(t1,"Upper part",1.0,0.5,2.0) }
{parameter(t2,"Lower part",1.0,0.5,2.0) }
```

- 5. On the **Text** toolbar, click 🔊.
- 6. In the Find dialog, Find field, enter / PROP/SHELL.
- 7. Click ****. The parameterized **/PROP/SHELL** cards, which reference the input variables, highlight.

8. On the **Text** toolbar, click . The text editor evaluates the Templex statements, and replaces the parameters with their initial values.

/ D	DOD/SHRIT	/1									
1	KOF/ SREDD	/ 1									
÷	Ishell	Ismstr									
	1	2									
ŧ		hm	hf	hr	dm		dn				
		0	0	0	0		0				
ŧ	N	Istrain	Thick	Ashear	Ithick	Iplas					
	2	0	1.00000	1	0	0					
\$	1	2	3 4	5 6 -	7 8 -	91	-10				
/P	ROP/SHELL	/2									
2											
ŧ	Ishell	Ismstr									
	1	2									
Ŧ		hm	hf	hr	dm		dn				
			0	0	0		0				
Ŧ	N	Istrain	Thick	Ashear	Ithick	ipias					
	2	2 1	1.00000		7 1 0 1	0	10				
+	DOD (SHELL	/2	3 4			91	1				
75	/PROP/SHELL/3										
3 #	Tshell	Tamatr									
3 ‡	Ishell 1	Ismstr 2									
3 # #	Ishell 1	Ismstr 2 hm	hf	hr	dm		dn				
3 ‡ ‡	Ishell 1	Ismstr 2 hm 0	hf 0	hr 0	dm. 0		dn 0				
3 ‡ ‡ ‡	Ishell 1 N	Ismstr 2 hm 0 Istrain	hf 0 Thick	hr 0 Ashear	dm 0 Ithick	Iplas	dn 0				
3 # # #	Ishell 1 N 2	Ismstr 2 hm 0 Istrain 0	hf 0 Thick 1.00000	hr O Ashear 1	dm O Ithick O	Iplas 0	dn 0				
3 # # # #	Ishell 1 N 2 1	Ismstr 2 hm 0 Istrain 0 2	hf 0 Thick 1.00000 3 4	hr 0 Ashear 1 56	dm 0 Ithick 0 781-	Iplas 0 9	dn 0				
3 # # # # /Pi	Ishell 1 N 2 1 ROP/SHELL,	Ismstr 2 hm 0 Istrain 0 2 /4	hf 0 Thick 1.00000 3 4	hr 0 Ashear 1 5 6 -	dm 0 Ithick 0 78	Iplas 0 9	dn 0				
3 # # # # /P! 4	Ishell 1 N 2 1 ROP/SHELL,	Ismstr 2 hm 0 Istrain 0 2 /4	hf 0 Thick 1.00000 3 4	hr 0 Ashear 1 5 6 -	dm 0 Ithick 0 78	Iplas 0 9	dn 0				
3 # # # /P! 4 #	Ishell 1 N 2 1 ROP/SHELL, Ishell	Ismstr 2 hm 0 Istrain 0 2 /4 Ismstr	hf 0 Thick 1.00000 3 4	hr 0 Ashear 1 5 6 -	dm 0 Ithick 0 781-	Iplas 0 9	dn 0				
3 # # # /P! 4 #	Ishell 1 N 2 1	Ismstr 2 hm 0 Istrain 0 2 /4 Ismstr 2	hf 0 Thick 1.00000 3 4	hr 0 Ashear 1 5 6 -	dm 0 Ithick 0 78	Iplas 0 9	dn 0				
3 # # # # /P! 4 #	Ishell 1 N 2 1	Ismstr 2 hm 0 Istrain 0 2 /4 Ismstr 2 hm	hf 0 Thick 1.00000 3 4 hf	hr 0 Ashear 1 5 6 - hr	dm 0 Ithick 0 78 - 8	Iplas 0 9	dn 0 10 dn				
3 # # # # /P! 4 #	Ishell 1 N 2 1 ROP/SHELL, Ishell 1	Ismstr 2 hm 0 Istrain 0 2 /4 Ismstr 2 hm 0	hf 0 Thick 1.00000 3 4 hf 0	hr 0 Ashear 1 5 - 6 - hr 0	dm 0 Ithick 0 78 - dm 0	Iplas 0 9	dn 0 10 dn 0				
3 # # # # /P! 4 # # #	Ishell N 2 1 ROP/SHELL, Ishell 1 N	Ismstr 2 hm 0 Istrain 0 2 /4 Ismstr 2 hm 0 Istrain	hf 0 Thick 1.00000 3 4 hf 0 Thick	hr 0 Ashear 1 5 - 6 - hr 0 Ashear	dm 0 Ithick 0 78 - dm 0 Ithick	Iplas 0 9 Iplas	dn 0 10 dn 0				
3 # # # # /P! 4 # # #	Ishell N 2 1 ROP/SHELL, Ishell 1 N 2 	Ismstr 2 hm 0 Istrain 0 2 /4 Ismstr 2 hm 0 Istrain 0	hf 0 Thick 1.00000 3 4 hf 0 Thick 1.00000	hr 0 Ashear 1 56 hr 0 Ashear 1	dm 0 Ithick 0 78 - dm 0 Ithick 0	Iplas 0 9 Iplas 0	dn 0 10 dn 0				

10. Close HyperGraph; you do not need to save the session.

Step 3: Perform the Study Setup

- 1. Return to HyperStudy.
- 2. To start a new study, click *File* > *New* from the menu bar, or click *on the toolbar*.
- 3. In the **HyperStudy Add** dialog, enter a study name, select a location for the study, and click **OK**.
- 4. Go to the **Define models** step.
- 5. Add a Parameterized File model.
 - a. From the **Directory**, drag-and-drop the <code>boxbeam1.tpl</code> file into the work area.

	Explorer	E Direct	ory		s	Define Mo	odels	
Nar	me		Size	Туре	_		_	
⊿ 🎳	C:\HS-422	0			Ð	Add Model	E	Remove Model
	≰ study_l	lock.xml	859 bytes	Study Lock	Active	Label	Varnam	e Model Type
	📄 boxbea	am1_0001.rad	412 bytes	rad File	Active	Laber	varnarn	e model type
	📄 boxbea	am1_0000.rad	142 KB	rad File	_			_
	🔳 boxbea	ım1.tpl	142 KB	tpl File	1	boxbeam	L.tpl	
⊳	📗 _usr			Settings Folder				+
	Study_	1.xml	3 KB	xml File				

- b. In the **Solver input file** column, enter <code>boxbeam1_0000.rad</code>. This is the name of the solver input file HyperStudy writes during any evaluation.
- c. In the Solver execution script column, select RADIOSS (radioss).

- 6. Define a model dependency.
 - a. Click *Model Resources*.
 - b. In the **Model Resource** dialog, click **Add Resource** > **Add Input Resource**.
 - c. In the **Select File** dialog, navigate to your working directory and open the boxbeam1_0001.rad file.
 - d. Set **Operation** to **Copy**.
 - e. Click *Close*.

7. Click *Import Variables*. Two input variables are imported from the **boxbeam1.tpl** resource file.

- 8. Go to the **Define Input Variables** step.
- 9. Review the input variable's lower and upper bound ranges.
- 10. Go to the **Specifications** step.

Step 4: Perform the Nominal Run

- 1. In the work area, set the **Mode** to **Nominal Run**.
- 2. Click Apply.
- 3. Go to the **Evaluate** step.
- 4. Click *Evaluate Tasks*. An approaches/nom_1/ directory is created inside the study directory. The approaches/nom 1/run 00001/m 1 directory contains the result files.
- 5. Go to the **Define Output Responses** step.

Step 5: Create and Define Output Responses

- 1. Create the Energy output response, which is the internal energy of the model.
 - a. From the **Directory**, drag-and-drop the boxbeam1T01 file, located in approaches/nom_1/run_00001/m_1, into the work area.
 - b. In the File Assistant dialog, set the Reading technology to *Altair*® *HyperWorks*® (*hgradioss++.exe*) and click *Next*.
 - c. Select Single item in a time series, then click Next.
 - d. Define the following options, and then click **Next**.
 - Set Type to Global Variables.
 - Set **Request** to *Internal Energy*.
 - Set Component to MAG.

🚽 File Assistant	
Single se	erial or time series
Subcase:	
Type:	Global Variables 🔹
Request:	Internal Energy Filter
Component:	MAG 🔹
V Preview:	400 300 200 0 0 0 500 1000 1500 2000 2500 Index
	< Back Next > Cancel

- e. Label the output response Energy.
- f. Set **Expression** to *Maximum*.

₫	File Assistar	nt		×				
Create a Data Source and a Response								
Creating a new Data Source								
	Label: Data Source 1							
	2	Varname: r	n_1_ds_1)				
	Linked t	to a new Resp	onse					
		Label:	Energy					
		Varname:	m_1_r_1					
		Comment:	Data Source 1]				
		Expression:	max(m_1_ds_1) Maximum]				
			< Back Finish Cance	e				

- g. Click *Finish*. The Energy output response is added to the work area.
- 2. Create the Force output response, which is the resultant reaction force in the Zdirection.
 - a. From the **Directory**, drag-and-drop the boxbeam1T01 file, located in approaches/nom_1/run_00001/m_1, into the work area.
 - b. In the File Assistant dialog, set the Reading technology to *Altair*® *HyperWorks*® (*hgradioss++.exe*) and click *Next*.
 - c. Select **Single item in a time series**, then click **Next**.
 - d. Define the following options, and then click **Next**.
 - Set Type to *Rigid wall/Wall Force*.
 - Set **Request** to **1 RWALL 1**.
 - Set Component to FNZ-Z NORMAL FORCE.
 - e. Label the output response Force.
 - f. Set **Expression** to *Maximum*.
 - g. Click *Finish*. The Force output response is added to the work area.
- 3. Create the Mass output response.
 - a. From the **Directory**, drag-and-drop the boxbeam1T01 file, located in approaches/nom_1/run_00001/m_1, into the work area.
 - b. In the **File Assistant** dialog, set the **Reading technology** to **Altair**® **HyperWorks**® (hgradioss++.exe) and click **Next**.
 - c. Select Single item in a time series, then click Next.
 - d. Define the following options, and then click **Next**.

- Set **Type** to *Global Variables*.
- Set **Request** to *Mass*.
- Set **Component** to **MAG**.
- e. Label the output response Mass.
- f. Set **Expression** to *First Element*.
- g. Click *Finish*. The Mass output response is added to the work area.
- 4. Click *Evaluate* to extract the output response values.

	Active	Label	Varname	Expression	Value	Comment
1	V	Energy	m_1_r_1	max(m_1_ds_1)	438.58371	Data Source 1
2	v	Force	m_1_r_2	max(m_1_ds_2)	89.973709	Data Source 2
3	V	Mass	m_1_r_3	m_1_ds_3[0]	25.446430	Data Source 3

Step 6: Run an Optimization Study

- 1. In the **Explorer**, right-click and select **Add** from the context menu.
- 2. In the **Add HyperStudy** dialog, select **Optimization** and click **OK**.
- 3. Go to the **Select Input Variables** step.
- 4. Review the lower and upper bound ranges of the input variables.
- 5. Go to the **Select Output Responses** step.
- 6. Apply an objective to the Mass output response.
 - a. In the **Objectives** column for Mass, click **S**.
 - b. In the pop-up window, set **Type** to *Minimize* and click *OK*.

	Active	Label	Varname	Objectives	Constraints	Evaluate From
1	V	Energy	m_1_r_1	•	•	> Solver
2	V	Force	m_1_r_2	0	•	> Solver
3	V	Mass	m_1_r_3	Minimize	•	> Solver

- 7. Apply a constraint to the Energy output responses.
 - a. In the **Constraints** column for Energy, click **•**.
 - b. In the pop-up window, define the following and click **OK**.
 - Set **Type** to **Deterministic**.
 - Set **Bound Type** to >=.
 - For Bound Value, enter 450.
- 8. Apply a constraint to the Force output responses.

- a. In the **Constraints** column for Energy, click **Q**.
- b. In the pop-up window, define the following and click **OK**.
 - Set **Type** to **Deterministic**.
 - Set **Bound Type** to **<=**.
 - For Bound Value, enter 75.

	Active	Label	Varname	Objectives	Constraints	Evaluate From
1	1	Energy	m_1_r_1	•	>= 450.00000	> Solver
2	V	Force	m_1_r_2	•	<= 75.000000	> Solver
3	V	Mass	m_1_r_3	Minimize	0	> Solver

- 9. Click *Apply*.
- 10. Go to the **Specifications** step.
- In the work area, set the Mode to Adaptive Response Surface Method (ARSM).
 Note: Only the methods that are valid for the problem formulation are enabled.
- 12. Click Apply.
- 13. Go to the **Evaluate** step.
- 14. Click *Evaluate Tasks* to launch the Optimization.

Step 7: View the Iteration History of an Optimization Study

1. Click the **Iteration History** tab to display data in a tabluar view. The optimal design is highlighted green, the infeasible designs are shown with red text, and the violated constraints are indicated in bold text.

	¶+ Upper part	"∐+ Lower part	_{Energy}	🕼 Force	🕼 Mass	¥ Objective1	🏄 Constraint 1	🛃 Constraint 2	Iteration Index	Evaluation
1	1.0000000	1.0000000	438.58371	89.973709	25.446430	25.446430	438.58371	89.973709	1	1
2	1.1650000	1.0000000	434.71823	69.646622	25.480909	25.480909	434.71823	69.646622	2	2
3	1.0000000	1.1650000	490.14233	68.711662	25.485611	25.485611	490.14233	68.711662	3	3
4	1.0772704	1.0423280	419.19440	74.710403	25.472628	25.472628	419.19440	74.710403	4	4
5	1.0256669	1.0904766	449.24582	75.045273	25.473280	25.473280	449.24582	75.045273	5	5

2. Click the *Iteration Plot* tab to plot the iteration history of the study's objectives, constraints, and input variables.

Using the **Channel** selector, select **Objective 1**, **Constraint 1**, and **Constraint 2**.

In the initial design, the design was infeasible as indicated by the large circular marker for the first iteration. A view of the constraint plots shows that the second constraint was violated in the initial design. Initially, the optimizer added some weight in order to satisfy the design constraints. Notice that both constraints are near their bounds in the optimal design.

Last modified: v2017.2 (12.1156684)

