

altairhyperworks.com

# HS-3000: Fit Method Comparison: Approximation on the Arm Model

In this tutorial, you will create approximations for the output responses of the arm example introduced in tutorial HS-2000: DOE Method Comparison: Arm Model Study, and review the differences between different Fit methods.

Before running this tutorial, complete tutorial HS-2000: DOE Method Comparison: Arm Model Study. You can also import the archive file HS-2000.hstx, available in <hst.zip>/HS-3000/.

In HS-2000, you learned that instead of using the nine input variables, you could continue additional studies just as effectively with six shapes since the others did not have a great influence on the output responses. This will save computational effort.

In this tutorial, you will use the six shapes variables.

| Length1: | Lower Bound = $-0.5$ , Initial Bound = $0.0$ , Upper Bound = $2.0$ |
|----------|--------------------------------------------------------------------|
| Length2: | Lower Bound = 0.0, Initial Bound = 0.0, Upper Bound = 2.0          |
| Length3: | Lower Bound = $-1.0$ , Initial Bound = $0.0$ , Upper Bound = $1.0$ |
| Length4: | Lower Bound = $-1.0$ , Initial Bound = $0.0$ , Upper Bound = $1.0$ |
| Length5: | Lower Bound = $-1.0$ , Initial Bound = $0.0$ , Upper Bound = $1.0$ |
| Height:  | Lower Bound = $-1.0$ , Initial Bound = $0.0$ , Upper Bound = $1.0$ |

You will begin this tutorial by creating a Modified Extensible Lattice Sequence (MELS) DOE. MELS is a space filling DOE designed to equally spread out points in a space by minimizing clumps and empty spaces. The minimal required number of points to create a second order polynomial with N variables is 1.1\*(N + 1)\*(N + 2)/2. Using this matrix, you will then create the following Fits for both output responses: Least Square Regression (LSR), Moving Least Square (MLSM), HyperKriging (HK), and Radial Basis Function (RBF).

## Step 1: Run MELS DOE Study

In order to create the approximations to be used as surrogate models, you must perform specific DOEs that will serve as the input matrix. You will need to run a DOE suitable to be used in response surface creation, such as MELS.

- 1. In the **Explorer**, right-click and select **Add** from the context menu.
- 2. In the Add HyperStudy dialog, select DOE and click OK.
- 3. Go to the **Select Input Variables** step.
- 4. In the work area, **Active** column, clear the **radius\_1**, **radius\_2** and **radius\_3** checkboxes.



|   | Active   | Label    | Varname      | Low    |
|---|----------|----------|--------------|--------|
| 1 | <b>V</b> | length_1 | m_1_length_1 | -0.500 |
| 2 | 1        | length_2 | m_1_length_2 | 0.000  |
| 3 | 1        | length_3 | m_1_length_3 | -1.000 |
| 4 | 1        | length_4 | m_1_length_4 | -1.000 |
| 5 | 1        | length_5 | m_1_length_5 | -1.000 |
| 6 |          | radius_1 | m_1_radius_1 | -2.000 |
| 7 |          | radius_2 | m_1_radius_2 | -0.500 |
| 8 |          | radius_3 | m_1_radius_3 | -0.500 |
| 9 | 1        | height   | m_1_height   | -1.000 |

- 5. Go to the **Specifications** step.
- 6. In the work area, set the **Mode** to **Modified Extensible Lattice Sequence (MELS)**.
- 7. In the **Settings** tab, verify that the **Number of runs** is set to 31.
- 8. Click *Apply*.
- 9. Go to the **Evaluate** step.
- 10. Click *Evaluate Tasks*.
- 11. Go to the **Post-Processing** step.
- 12. Click the *Scatter* tab to review a 2D scatter plot of the results from the MELS DOE.

The image below illustrates a typical sampling of the MELS DOE with 31 runs (length\_1 vs. length\_2).

**Note:** This visualization is a projection of 31 points distributed in 6 dimensions onto a 2 dimensional plane.



13. **Optional**. Create a second DOE with less number of runs to be used as a Validation matrix in the Fit approach.



A Validation matrix provides information on the Fit's prediction accuracy.

**Note:** You should not use MELS as a Validation matrix, as it will take the same first runs from the MELS Input matrix due to its extensibility.

In this tutorial, you will use the Hammersley method to create the Validation matrix.

- a. In the **Explorer**, right-click on the MELS DOE and select *Copy* from the context menu.
- b. In the **Specifications** step, set the **Mode** to *Hammersley*.
- c. In the **Settings** tab, change the **Number of runs** to 12.
- d. Click Apply.
- e. In the **Evaluate** step, click *Evaluate Tasks*.

### Step 2: Setting Up a Fit Approach

Using the 31 runs from the MELS DOE as an Input matrix and the 12 runs from the Hammersley DOE as a Validation matrix, create the following fits: Least Square Regression (LSR), Moving Least Square Method (MLSM), HyperKriging (HK), and Radial Basis Function (RBF).

- 1. In the **Explorer**, right-click and select **Add** from the context menu.
- 2. In the Add HyperStudy dialog, select Fit and click OK.
- 3. Go to the Select Matrices step.
- 4. Click *Add Matrix* two times.
- 5. Define **FitMatrix 1** and **FitMatrix 2**, by selecting the options indicated in the image below from the **Type** and **Matrix Source** columns.

|   | Active | Label        | Varname     | Туре         | Matrix Source               | Matrix Origin      | Status         |
|---|--------|--------------|-------------|--------------|-----------------------------|--------------------|----------------|
| 1 | 1      | Fit Matrix 1 | fitmatrix_1 | Input 🔹      | DOE, MELS ( doe_5 ) 🔹 🔻     | DoeDOE, MELS       | Import Pending |
| 2 | 2      | Fit Matrix 2 | fitmatrix_2 | Validation 💌 | DOE, Hammersley ( doe_6 ) 🔻 | DoeDOE, Hammersley | Import Pending |

- 6. Click *Import Matrix*.
- 7. Go to the **Specifications** step.
- 8. In the work area, set the **Mode** to the appropriate **Fit** method.
- 9. For the Least Sqaure Regressions (LSR) Fit, in the **Settings** tab, set **Regression Model** to *Interaction*.

An Interaction regression model enables linear and cross terms to be considered in the function f(x,y)=A+Bx+Cy+Dxy; where the first three terms are linear, and the last term is a cross term between the variables.



|                  | Value       |   |
|------------------|-------------|---|
| Regression Model | interaction | • |
|                  |             |   |
|                  |             |   |
|                  |             |   |
|                  |             |   |
| Ö Settings       |             |   |

- 10. Click Apply.
- 11. Go to the **Evaluate** step.
- 12. Click *Evaluate Tasks*.
- 13. Go to the **Post-Processing** step.
- 14. Click the *Scatter* tab to compare the original Max\_Stress output response to the Fit Max\_Stress.

The scatter shows the Fit accuracy. The closer together the points are along the diagonal, the better the fit. In the Max\_Stress vs Max\_Stress\_LSR plot, you can see some dispersed points, which indicates the Fit has some inaccuracy. In comparison, the points in the Max\_Stress vs Max\_Stress\_MLSM plot follow the diagonal more closely, which indicates it provides better Fit accuracy on Max\_Stress.

You will not compare HyperKriging and Radial Basis Function using scatter plots, because the results will be misleading. HyperKriging and Radial Basis Function go through the exact points by default, therefore the scatter plot comparing the original output response vs. the Fit output response will produce a straight line. However, this does not necessarily mean that the Fit has good predictive capability.





Max\_stress and Max\_stress\_MLSM comparison

#### 15. Click the *Diagnostics* tab to review the diagnostics of the Fit study.

The R-Square value measures how much of the variability of the response data around its mean is captured. If the model perfectly predicts the known values, R-Square will have a maximum possible value of 1.0.



|   | Criterion                       | Input Matrix | Cross-Validation Matrix | Validation Matrix |
|---|---------------------------------|--------------|-------------------------|-------------------|
| 1 | R-Square                        | 0.9660680    | 0.6451045               | -0.5578945        |
| 2 | R-Square Adjusted               | 0.8868933    | N/A                     | N/A               |
| 3 | Multiple R                      | 0.9828876    | 0.8031840               | Undefined         |
| 4 | Relative Average Absolute Error | 0.1426813    | 0.4824845               | 0.8770736         |
| 5 | Maximum Absolute Error          | 15.706113    | 47.025444               | 88.242350         |
| 6 | Root Mean Square Error          | 6.8185250    | 22.051385               | 36.774466         |
| 7 | Number of Samples               | 31           | 31                      | 12                |

|   | Criterion                       | Input Matrix | Cross-Validation Matrix | Validation Matrix |
|---|---------------------------------|--------------|-------------------------|-------------------|
| 1 | R-Square                        | 0.9804999    | 0.7722986               | 0.2518844         |
| 2 | Relative Average Absolute Error | 0.0795629    | 0.3524697               | 0.7668477         |
| 3 | Maximum Absolute Error          | 17.634488    | 43.590150               | 48.971741         |
| 4 | Root Mean Square Error          | 5.1689730    | 17.663163               | 25.483655         |
| 5 | Number of Samples               | 31           | 31                      | 12                |

Diagnostics for Max\_Stress, LSR

Diagnostics for Max\_Stress, MLSM

The R-square value for an Input Matrix in HyperKriging and Radial Basis Function has no meaning because the runs will always go through the exact data points, which will result in a value of 1.0. Although the value is 1.0, this does not mean the Fit will be accurate. In HyperKriging and Radial Basis Function, the only meaningful diagnostic values are for Cross-validation Matrix and Validation Matrix.

|   | Criterion                       | Input Matrix | Cross-Validation Matrix | Validation Matrix |
|---|---------------------------------|--------------|-------------------------|-------------------|
| 1 | R-Square                        | 1.0000000    | 0.7584457               | -6.9938493        |
| 2 | Relative Average Absolute Error | 1.40e-04     | 0.3703571               | 2.0746075         |
| 3 | Maximum Absolute Error          | 0.0193176    | 48.369640               | 200.32467         |
| 4 | Root Mean Square Error          | 0.0073919    | 18.192527               | 83.301981         |
| 5 | Number of Samples               | 31           | 31                      | 12                |

|   | Criterion                       | Input Matrix | Cross-Validation Matrix | Validation Matrix |
|---|---------------------------------|--------------|-------------------------|-------------------|
| 1 | R-Square                        | 1.0000000    | 0.7089073               | 0.3249540         |
| 2 | Relative Average Absolute Error | 1.37e-14     | 0.4071550               | 0.6727536         |
| 3 | Maximum Absolute Error          | 1.36e-12     | 43.731749               | 48.951755         |
| 4 | Root Mean Square Error          | 6.34e-13     | 19.971069               | 24.207172         |
| 5 | Number of Samples               | 31           | 31                      | 12                |

Diagnostics for Max\_Stress, HK

Diagnostics for Max\_Stress, RBF

16. Click the **Residuals** tab to review the Error (and Percent Error) between the original output response and the Fit output response for each run of the Input and Validation matrices.

|    | 🕼 Max_Stress | Max_Stress_LSR | Error      | Percent Error |
|----|--------------|----------------|------------|---------------|
| 28 | 227.84496    | 243.53706      | -15.692107 | -6.8871864    |
| 5  | 153.32707    | 161.15593      | -7.8288583 | -5.1059856    |
| 6  | 265.17667    | 277.35118      | -12.174513 | -4.5910951    |
| 7  | 215.90872    | 224.17526      | -8.2665369 | -3.8287184    |
| 3  | 221.75601    | 229.64985      | -7.8938428 | -3.5596973    |
| 25 | 169.21870    | 175.00918      | -5.7904743 | -3.4218878    |
| 2  | 204.46399    | 210.79303      | -6.3290358 | -3.0954281    |
| 20 | 181.29922    | 186.85618      | -5.5569586 | -3.0650758    |
| 11 | 191.08934    | 194.52138      | -3.4320380 | -1.7960385    |
| 13 | 202.15817    | 204.38358      | -2.2254038 | -1.1008231    |
| 8  | 224.06998    | 226.32020      | -2.2502254 | -1.0042512    |
| 29 | 232.83224    | 234.09221      | -1.2599674 | -0.5411481    |
| 9  | 227.26093    | 228.46158      | -1.2006530 | -0.5283148    |
| 21 | 227.85101    | 228.87125      | -1.0202365 | -0.4477647    |
| 14 | 253.25926    | 253.93153      | -0.6722710 | -0.2654478    |

|    | 🐝 Max_Stress | Max_Stress_LSR | Error      | Percent Error |
|----|--------------|----------------|------------|---------------|
| 7  | 278.00589    | 189.76354      | 88.242350  | 31.741180     |
| 12 | 258.82968    | 217.22029      | 41.609396  | 16.075975     |
| 6  | 254.82101    | 230.99098      | 23.830037  | 9.3516766     |
| 5  | 253.55190    | 237.19830      | 16.353591  | 6.4498003     |
| 1  | 246.41943    | 242.40671      | 4.0127194  | 1.6284103     |
| 3  | 192.49901    | 192.07159      | 0.4274137  | 0.2220342     |
| 11 | 221.89412    | 224.24935      | -2.3552289 | -1.0614201    |
| 4  | 190.98055    | 197.83473      | -6.8541842 | -3.5889437    |
| 9  | 248.95694    | 262.80022      | -13.843282 | -5.5605128    |
| 10 | 266.74866    | 290.45870      | -23.710042 | -8.8885330    |
| 2  | 202.90829    | 223.83552      | -20.927221 | -10.313635    |
| 8  | 271.92908    | 339.85852      | -67.929438 | -24.980572    |

Input Matrix Residuals on Max\_Stress, LSR

Validation Matrix Residuals on Max\_Stress, LSR

The Input Matrix Residual errors are slightly smaller with Least Square Regression, than they are with Moving Least Square Method, but the Validation Matrix Residual errors are much smaller with Moving Least Square Method.



|    | 🕼 Max_Stress | Max_StressMLSM | Error      | Percent Error |
|----|--------------|----------------|------------|---------------|
| 20 | 181.29922    | 198.93371      | -17.634488 | -9.7267311    |
| 2  | 204.46399    | 217.80293      | -13.338942 | -6.5238587    |
| 28 | 227.84496    | 239.88645      | -12.041492 | -5.2849499    |
| 3  | 221.75601    | 226.50677      | -4.7507556 | -2.1423345    |
| 6  | 265.17667    | 270.28086      | -5.1041893 | -1.9248260    |
| 15 | 187.07663    | 190.06010      | -2.9834661 | -1.5947829    |
| 9  | 227.26093    | 230.27711      | -3.0161824 | -1.3271892    |
| 25 | 169.21870    | 171.28462      | -2.0659159 | -1.2208556    |
| 23 | 245.55453    | 247.27224      | -1.7177041 | -0.6995204    |
| 1  | 186.22330    | 187.38918      | -1.1658811 | -0.6260662    |

Input Matrix Residuals on Max\_Stress, MLSM

|    | 🐝 Max_Stress | Max_StressMLSM | Error                     | Percent Error |
|----|--------------|----------------|---------------------------|---------------|
| 8  | 271.92908    | 320.90082      | -48.971741                | -18.009012    |
| 4  | 190.98055    | 217.61007      | -26.629 <mark>5</mark> 22 | -13.943579    |
| 9  | 248.95694    | 274.61162      | -25.654679                | -10.304866    |
| 2  | 202.90829    | 221.15364      | -18.2 <mark>45346</mark>  | -8.9919175    |
| 10 | 266.74866    | 286.23501      | -19.486357                | -7.3051376    |
| 3  | 192.49901    | 203.30775      | -10.808737                | -5.6149572    |
| 11 | 221.89412    | 227.11995      | -5.2258324                | -2.3551018    |
| 1  | 246.41943    | 236.24391      | 10.175520                 | 4.1293496     |
| 12 | 258.82968    | 241.29414      | 17.535544                 | 6.7749355     |
| 5  | 253.55190    | 229.39311      | 24.158782                 | 9.5281411     |
| 6  | 254.82101    | 230.22777      | 24.593242                 | 9.6511830     |
| 7  | 278.00589    | 238.36734      | 39.638550                 | 14.258169     |

Validation Matrix Residuals on Max\_Stress, MLSM

The Input Matrix Residuals are meaningless for HyperKriging and Radial Basis Function, as indicated in the Validation Matrix Residuals below.

|    |           | 🐤 Max_StressHK | Error      | Percent Error |
|----|-----------|----------------|------------|---------------|
| 7  | 278.00589 | 140.75357      | 137.25232  | 49.370293     |
| 12 | 258.82968 | 177.66160      | 81.168080  | 31.359649     |
| 6  | 254.82101 | 232.73639      | 22.084621  | 8.6667188     |
| 5  | 253.55190 | 234.06450      | 19.487398  | 7.6857630     |
| 4  | 190.98055 | 190.61134      | 0.3692090  | 0.1933228     |
| 9  | 248.95694 | 264.39798      | -15.441043 | -6.2022945    |
| 2  | 202.90829 | 226.15834      | -23.250041 | -11.458398    |
| 11 | 221.89412 | 249.93091      | -28.036792 | -12.635212    |
| 10 | 266.74866 | 308.47441      | -41.725756 | -15.642349    |
| 1  | 246.41943 | 332.77346      | -86.354023 | -35.043512    |
| 3  | 192.49901 | 270.49564      | -77.996631 | -40.517939    |
| 8  | 271.92908 | 472.25375      | -200.32467 | -73.667986    |

|    | 🕼 Max_Stress | Max_StressRBF | Error                   | Percent Error |
|----|--------------|---------------|-------------------------|---------------|
| 7  | 278.00589    | 229.05413     | 48.951755               | 17.608172     |
| 6  | 254.82101    | 222.49933     | 32.321 <mark>685</mark> | 12.684073     |
| 5  | 253.55190    | 233.47816     | 20.073738               | 7.9170137     |
| 12 | 258.82968    | 242.97057     | 15.859112               | 6.1272384     |
| 1  | 246.41943    | 243.09465     | 3.3247827               | 1.3492372     |
| 9  | 248.95694    | 249.87639     | -0.91945                | -0.3693211    |
| 3  | 192.49901    | 197.92264     | -5.42363                | -2.8174855    |
| 2  | 202.90829    | 216.43394     | -13.5256                | -6.6658891    |
| 11 | 221.89412    | 238.39201     | -16.4978                | -7.4350300    |
| 10 | 266.74866    | 289.73002     | -22.9 <mark>813</mark>  | -8.6153633    |
| 4  | 190.98055    | 209.21854     | -18.2379                | -9.5496611    |
| 8  | 271.92908    | 311.66832     | -39.7392                | -14.613826    |

Validation Matrix Residuals on Max\_Stress, HK

Validation Matrix Residuals on Max\_Stress, RBF

### Comparison

The max percent of errors for Input and Validation matrices are as shown below:

|            | LSR (Interaction<br>Regression model) | MLSM   | нк | RBF |
|------------|---------------------------------------|--------|----|-----|
| Max_Disp   | -1.33%                                | -2.56% | -  | -   |
| Max_Stress | -6.88%                                | -9.73% | -  | -   |

Input Matrix Residuals



|            | LSR (Interaction<br>Regression model) | MLSM    | нк     | RBF    |
|------------|---------------------------------------|---------|--------|--------|
| Max_Disp   | 6.23%                                 | -3.33%  | 9.48%  | -2.80% |
| Max_Stress | 31.74%                                | -18.00% | 49.37% | 17.60% |

Validation Matrix Residuals

It can be seen that the percent of errors for Max\_Disp are smaller than Max\_Stress. These results indicate the Fit approach works well for Max\_Disp, but is not very efficient for Max\_Stress.

These finding suggest that it is best to use the Fit model obtained from the MLSM for Max\_Disp. An output response such as Max\_Stress is a global envelope of localized effects. The nature of such an envelope type of output responses makes them difficult to capture accurately with a Fit. In contrast, the Max\_Disp output response is not influenced by localized effects, therefore it is easier to use a Fit for such data. When proceeding in this situation, it is recommended that you either increase the number of samples, which is not guaranteed to improve the accuracy, or create a series of more localized output responses that would be simpler functions of the input variables; for example, several output responses that each capture the stress in specific regions. The image below highlights the areas of high stresses from the runs in the Input matrix.



Last modified: v2017.2 (12.1156684)

