

altairhyperworks.com

HS-2215: Extensible DOE Study of a Space Frame Structure with Input Variable Constraints

In this tutorial you will use a DOE to investigate the effects of the cross sectional dimensions and joint stiffness of a truss structure's volume and natural frequencies. The tubular truss dimensions must be constrained, such that the inner radius is always less than the outer radius. You will also use the extensible feature of the Modified Extensible Lattice Sequence in a progressive set of steps to add additional runs to a DOE.

The files used in this tutorial can be found in <hst.zip>/HS-2215/. Copy the files from this directory to your working directory.

Step 1: Perform the Study Setup

- 1. Start HyperStudy.
- 2. To start a new study, click **File** > **New** from the menu bar, or click \blacksquare on the toolbar.
- 3. In the **HyperStudy Add** dialog, enter a study name, select a location for the study, and click **OK**.
- 4. Go to the **Define Models** step.
- 5. Add a Parameterized File model.
 - a. From the **Directory**, drag-and-drop the tinker_toy.tpl file into the work area.

- b. In the **Solver input file** column, enter tinker_toy.fem. This is the name of the solver input file HyperStudy writes during any evaluation.
- c. In the **Solver execution script** column, select **OptiStruct (os)**.
- d. In the Solver input arguments column, after file, enter -core in.

This option forces OptiStruct to run with maximum memory, which will make the analysis run more quickly. The small size of the finite element model makes this possible in this example.

	Active	Label	Varname		Model Type	Resource		Solver input file	Solver execution script	Solver input arguments
1	V	Model 1	m_1	{}	Parameterized File	C://HS-2215/tinker_toy	<mark>лас</mark> ()	tinker_toy.fem	OptiStruct (os)	\$file -core in

6. Click *Import Variables*. Three input variables are imported from the tinker_toy.tpl resource file.

- 7. Go to the **Define Input Variables** step.
- 8. Review the input variable's lower and upper bound ranges.
- 9. Click the *Constraints* tab.
- 10. Add an input variable constraint.
 - a. Click *Add Constraint*.
 - b. In the **Add HyperStudy** dialog, add one constraint.
 - c. Define the constraint.

Note: Use the Expression Builder to select input variables to append to the Left Expression and Right Expression fields.

- For Left Expression, enter m_1_outer_diam.
- Set **Comparison** to >=.
- For **Right Expression**, enter m_1_inner_diam.

	Active	Label	Varname	Left Expression	Comparison	Right Expression	Comment
1	V	Con 1	con_1	m_1_outer_diam ••••	>= 🔻	m_1_inner_diam	

11. Go to the **Specifications** step.

Step 2: Perform the Nominal Run

- 1. In the work area, set the **Mode** to **Nominal Run**.
- 2. Click Apply.
- 3. Go to the **Evaluate** step.
- 4. Click *Evaluate Tasks*. An approaches/nom_1/ directory is created inside the study directory.
- 5. Go to the **Define Output Responses** step.

Step 3: Create and Define Output Responses

- 1. Create the Volume output response.
 - a. From the **Directory**, drag-and-drop the tinker_toy.out file, located in approaches/nom_1/run_00001/m_1, into the work area.
 - b. In the **File Assistant** dialog, set the **Reading technology** to **Altair**® **HyperWorks**® (HstReaderPdd) and click Next.
 - c. Select Single item in a time series, then click Next.
 - d. Define the following options, and then click **Next**.

- Set **Type** to **Volume**.
- Set **Request** to **Volume**.
- Set **Component** to **Value**.

🗹 File Assistant				
Single se	erial or time series			
Subcase:				
Type:	Volume			
Request:	Volume Filter Volume			
Component:	Value			
✓ Preview:	50 48 46 44 42 40 0.90 0.93 0.95 0.98 1.00 1.03 1.05 1.08 1.10 Index			
	Cancel			

- e. Label the output response Volume.
- f. Set **Expression** to *Maximum*.

🔮 File Assista	nt	×				
Create	a Data S	ource and a Response				
Creating a	new Data Sour	ce				
	Label:	Data Source 1				
>	Varname: n	n_1_ds_1				
☑ Linked	☑ Linked to a new Response					
	Label:	Volume				
	Varname:	m_1_r_1				
	Comment:	Data Source 1				
	Expression:	max(m_1_ds_1) Maximum				
ß		Kack Finish Cancel				

- g. Click *Finish*. The Volume output response is added to the work area.
- 2. Create the Frequency_Vector data source, which will be used in the frequency output responses.
 - a. From the **Directory**, drag-and-drop the tinker_toy.out file, located in approaches/nom_1/run_00001/m_1, into the work area.
 - b. In the File Assistant dialog, set the Reading technology to *Altair*® *HyperWorks*® (*HstReaderPdd*) and click *Next*.
 - c. Select Multiple items at multiple time steps (readsim), then click Next.
 - d. Define the following options, and then click **Next**.
 - Set Type to *Frequency*.
 - Set **Request** (Start End) to *Mode 1 Mode 3*.
 - For Components, select Value.

File Assistant	
Multiple i	tems and components at one time-step
Subcase:	•
Type:	Frequency 🔹
Start: Request	Mode 1 Filter
End:	Mode 3 Filter
Components:	Value × Select ▼
Time:	All
☑ Preview:	2900 2800 2700 2600 2500 2400 2300 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
	Index
	Plot () Text Showing 1 of 1 √ Transpose matrix (X')
	< Back Next > Cancel

- e. Clear the *Linked to a new Response* checkbox.
- f. Label the data source Frequency_Vector.

🛫 File Assistant						
	Create a Data Source and a Response					
	Creating a new Data Source					
		Label:	Frequency_Vector]		
	▶	Varname:	m_1_ds_2			
	📃 Linked to	o a new Res	ponse			
		Label:	Response 2]		
		Varname:	m_1_r_2]		
		Comment:	Data Source 2]		
		Expression	max(m_1_ds_2)]		
			< Back Finish Cance	el		

g. Click Finish.

- 3. Add three output responses.
 - a. Click Add Output Response three times.
 - b. In the work area, label the output responses Frequency_1, Frequency_2, and Frequency_3.
- 4. Define the Frequency_1 output responses.
 - a. In the **Expression** column of the output response **Frequency_1**, click ••••.
 - b. In the **Expression Builder**, click the **Data Sources** tab.
 - c. In the work area, select *Frequency_Vector*.
 - d. From the Insert Varname drop-down menu, click First Element.
 - e. Click *Insert Varname*. The expression m_1_ds_2[0] appears in the Evaluate Expression field.

<mark>АВС</mark> ()	Evaluate Expression
=	m_1_ds_2[0]

- f. Click OK.
- 5. Repeat step 4 to define Frequency_2 and Frequency_3, except change the value after $m_1_ds_2$.
 - a. For Frequency_2, change [0] to [1].
 - b. For Frequency_3, change [0] to [2].
- 6. Click *Evaluate* to extract the output response values.

	Active	Label	Varname	Expression	Value	Comment
1	V	Volume	m_1_r_1	max(m_1_ds_1)	45.257800	Data Source 1
2	v	Frequency_1	r_2	m_1_ds_2[0]	2335.9880	
3	v	Frequency_2	r_3	m_1_ds_2[1]	2335.9880	
4	1	Frequency_3	r_4	m_1_ds_2[2]	2889.5160	

7. Click **OK**. This complete the study setup.

Step 4: Run a Modified Extensible Lattice Sequence DOE Study, with 4 Runs

- 1. In the **Explorer**, right-click and select **Add** from the context menu.
- 2. In the Add HyperStudy dialog, select Doe and click OK.
- 3. Go to the **Specifications** step.

- 4. In the work area, set the **Mode** to **Modified Extensible Lattice Sequence**.
- 5. In the **Settings** tab, change the **Number of runs** to 4, which is the minimum number of runs for a multivariate effects calculation.
- 6. Click *Apply*.
- 7. Go to the **Evaluate** step.
- 8. Click *Evaluate Tasks*.
- 9. Go to the **Post-Processing** step, and click the **Scatter** tab. Using the **Channel** selector, set the **X Axis** to **Outer_diameter** and the **Y Axis** to **Inner_diameter**.

All four runs satisfy the constraint, which is inner_radius < outer_radius.

10. Click the *Pareto Plot* tab, and note which input variables contribute to which output responses.

Above the **Channel** selector, click **and** verify **Multivariate effects** is selected.

Step 5: Extend DOE with 7 Additional Runs

In this step you will run a second Modified Extensible Lattice Sequence DOE study with 7 new runs, and include the 4 runs from DOE1. This DOE will have a total of 11 runs, which is the default suggested number of runs for a MELS DOE with three input variables.

which is the minimum suggested number of runs for three input variables.

- 1. In the **Explorer**, right-click and select **Add** from the context menu.
- 2. In the Add HyperStudy dialog, select Doe and click OK.
- 3. Go to the **Specifications** step.
- 4. In the work area, set the **Mode** to **Modified Extensible Lattice Sequence**.
- 5. In the **Settings** tab:
 - a. Change the **Number of runs** to 7.
 - b. Select the **Use Inclusion Matrix** checkbox.
- 6. Import run data from the DOE 1 using an Inclusion Matrix.
 - a. Click *Edit Matrix* > *Inclusion Matrix* from the top, right corner of the work area.

- b. In the Edit Inclusion Matrix dialog, click Import Values.
- c. In the **Import Values** dialog, select *Approach Evaluation Data* and click *Next*.
- d. Set approach to **DOE 1**.
- e. Click **Next**.
- f. Click *Finish*.
- g. Review the imported run data and click **OK**.
- 7. Click **Apply**.
- 8. Go to the **Evaluate** step.
- 9. Click *Evaluate Tasks*.
- 10. Go to the **Post-Processing** step, and click the **Scatter** tab. Using the **Channel** selector, set the **X Axis** to **Outer_diameter** and the **Y Axis** to **Inner_diameter**.

Note that all 11 runs still satisfy the constraint, which is inner_radius < outer_radius.

Click the *Pareto Plot* tab, and compare the results to the Pareto Plot from DOE 1.
 Note that the magnitude and order of importance has changed in some cases.

Step 6: Extend DOE with 4 Additional Runs

In this step you will run a third Modified Extensible Lattice Sequence DOE study with 4 new runs, and include the 11 runs from DOE 2. This DOE will have a total of 15 runs, which exceeds the number of suggested runs.

- 1. In the **Explorer**, right-click and select **Add** from the context menu.
- 2. In the Add HyperStudy dialog, select Doe and click OK.
- 3. Go to the **Specifications** step.
- 4. In the work area, set the **Mode** to **Modified Extensible Lattice Sequence**.
- 5. In the **Settings** tab:
 - a. Change the **Number of runs** to 4.
 - b. Select the **Use Inclusion Matrix** checkbox.
- 6. Import run data from the DOE 2 using an Inclusion Matrix.
 - a. Click *Edit Matrix* > *Inclusion Matrix* from the top, right corner of the work area.

	Edit Matrix
	Run Matrix
mber of 1 📷	Inclusion Matrix
dom Seed	1

- b. In the Edit Inclusion Matrix dialog, click Import Values.
- c. In the **Import Values** dialog, select *Approach Evaluation Data* and click *Next*.

- d. Set the approach to **DOE 2**.
- e. Click Next.
- f. Click Finish.
- g. Review the imported run data and click **OK**.
- 7. Click Apply.
- 8. Go to the **Evaluate** step.
- 9. Click *Evaluate Tasks*.
- 10. Go to the **Post-Processing** step, and click the **Pareto Plot** tab. Compare the results to the Pareto Plots from DOE 2.

Note that the results are qualitatively the same, indicating that you will likely have enough runs to draw solid conclusions.

Pareto Plot from DOE3

Pareto Plot from DOE2

