

altairhyperworks.com

HS-2210: Principle Component Analysis of a Cantilever Ibeam

The files used in this tutorial can be found in <hst.zip>/HS-2210/. Copy the files from this directory to your working directory.

Step 1: Perform the Study Setup

- 1. Start HyperStudy.
- 2. To start a new study, click **File** > **New** from the menu bar, or click \square on the toolbar.
- 3. In the HyperStudy Add dialog, enter a study name, select a location for the study, and click OK.
- 4. Go to the **Define Models** step.
- 5. Add a Parameterized File model.
 - a. From the $\ensuremath{\text{Directory}}$, drag-and-drop the <code>ibeam.tpl</code> file into the work area.

Explorer	Directory		3	Define Models	
Name	Size	Туре			O • • • • •
4 퉬 C:\HS-221	0			Add Model	Remove Model
≰ study_	lock.xml 739 byte	Study Lo	Active	Label Varna	me Model Type
🔳 ibeam	tpl 1 K	^B tpl File	Active	Laber Varia	ine model type
⊳ 퉲 _usr		Settings		1	
Study	1.xml 3 K	^B xml File	-	ibeam.tpl	
				™±	

- b. In the **Solver input file** column, enter ibeam.py. This is the name of the solver input file Hype any evaluation.
- c. In the Solver execution script column, select Python (py).

Active	Label	Varname	Model Type	Resource	Solver input file	Solver execution script	Solver input arguments
1 🗸	Model 1	m_1	Parameterized File	C://HS-2210/ibeam.tpl	() ibeam.py	> Python (py)	\$file

- 6. Click *Import Variables*. Four input variables are imported from the ibeam.tpl resource file.
- 7. Go to the **Define Input Variables** step.
- 8. Review the input variable's lower and upper bound ranges.
- 9. Go to the **Specifications** step.

Step 2: Perform the Nominal Run

- 1. In the work area, set the **Mode** to **Nominal Run**.
- 2. Click Apply.
- 3. Go to the **Evaluate** step.
- 4. Click *Evaluate Tasks*. An approaches/nom_1/ directory is created inside the study directory. The approaches/nom_1/run_00001/m_1 sub-directory contains the output.hstp file, which is the result of the nominal run, and will be used during the Optimization.
- 5. Go to the **Define Output Responses** step.

Step 3: Create and Define Output Responses

- 1. Create the Iy output response for the y-axis moment of inertia.
 - a. From the **Directory**, drag-and-drop the output.hstp file, located in approaches/nom_1/run_00001/m_1, into the work area.
 - b. In the File Assistant dialog, set the Reading technology to *Altair*® *HyperWorks*® (*HstReaderPdd*) and click *Next*.
 - c. Select **Single item in a time series**, then click **Next**.
 - d. Define the following options, and then click **Next**.
 - Set **Type** to **Output**.
 - Set **Request** to *Iy*.
 - Set **Component** to **Value**.

🚽 File Assistant	🔬 File Assistant						
Single se	Single serial or time series						
Subcase:							
Type:	Output						
Request:	Iy Filter V 🗸						
Component:	Value 💌						
☑ Preview:	64 62 60 58 56 54 52 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 Index						
	<back next=""> Cancel</back>						

- e. Label the output response Iy.
- f. Set **Expression** to *Maximum*.

4	File Assistar	nt	—				
Create a Data Source & Response							
	Creating a new Data Source						
	Label: Data Source 1						
	>	Varname: r	n_1_ds_1				
	☑ Linked to a new Response						
	•	Label:	Іу				
		Varname:	m_1_r_1				
		Comment:	Data Source 1				
		Expression:	max(m_1_ds_1) Maximum -				
-			< Back Finish Cancel				

- g. Click *Finish*. The Iy output response is added to the work area.
- 2. Create four more output responses by repeating step 1, except change the component assigned to each output response to the following.

Output Response	Component
Volume	Vol
IZ	Iz
Displacement	d
Frequency1	Freq

3. Click *Evaluate* to extract the output response values.

	Active	Label	Varname	Expression	Value	Comment
1	1	Iy	m_1_r_1	max(m_1_ds_1)	57.760000	Data Source 1
2	1	Volume	m_1_r_2	max(m_1_ds_2)	5.4400000	Data Source 2
3	1	IZ	m_1_r_3	max(m_1_ds_3)	8.3381300	Data Source 3
4	1	Displacement	m_1_r_4	max(m_1_ds_4)	5.77e-05	Data Source 4
5	1	Frequency1	m_1_r_5	max(m_1_ds_5)	3044.6300	Data Source 5

4. Click **OK**. This complete the study setup.

Step 4: Run a D-Optimal DOE Study

- 1. In the **Explorer**, right-click and select **Add** from the context menu.
- 2. In the **Add HyperStudy** dialog, select **Doe** and click **OK**.
- 3. Go to the **Specifications** step.
- 4. In the work area, set the **Mode** to *D***-Optimal**.
- 5. In the Settings tab, change the Number of runs to 13, which is 2 more runs than the minimum re
- 6. Click Apply.
- 7. Go to the **Evaluate** step.
- 8. Click *Evaluate Tasks*.
- 9. Go to the **Post-Processing** step, and click the **Ordination** tab.

The biplot is interpreted by looking at the relationship between the lines that each represent one inpresponses show a strong negative correlation because they are aligned, but pointing in opposite dire the input variable web thickness, indicated by the orthogonality. Similar strong positive correlations and flange length.

p.7

