

altairhyperworks.com

HS-2201: Using Existing Design Data from an Excel Spreadsheet with a Lookup Model

This tutorial demonstrates how to perform an optimization study for an application where only design data in a .csv file is available (that is no simulation model exists).

The objective of this tutorial is to create a fit (approximation) using the designs in the study.csv file and then to perform an optimization study using the fit.

The first and second columns contain the values of the two input variables for each design, and the third and fourth columns contain the results of a DOE study previously run. Sixteen designs have been evaluated.

Model Files

The study.csv file used in this tutorial can be found in <hst.zip>/HS-2201/. Copy these files to your working directory.

Exercise

Step 1: Perform the Study Setup

- 1. Start HyperStudy.
- 2. To start a new study, click **File** > **New** from the menu bar, or click \square on the toolbar.
- 3. In the **HyperStudy Add** dialog, enter a study name, select a location for the study, and click **OK**.
- 4. Go to the **Define models** step.
- 5. Add a Lookup model.
 - a. Click Add Model.
 - b. In the Add HyperStudy dialog, select Lookup and click OK.
 - c. In the work area, Resource column, click 📂.
 - d. In the **HyperStudy Load model resource** dialog, navigate to your working directory and open the study.csv file.
- 6. Click **Import Variables**.

7. In the **Import Variables** dialog, enter 2 in the Number of design variables field and click **OK**.

🔄 Import Variables	×
Resource file information File name	study.csv
Number of design variables	2
Start row	Optional
End row	Optional
	OK Cancel

8. Go to the **Define Input Variables** step and review the two input variables that were imported from the study.csv file.

Active	Label	Varname	Lower Bound	Nominal	Upper Bound	Comment
1 🗹	DV1	var_1	0.3367880	4.1015411	4.9862686	
2 🗸	DV2	var_2	0.4862686	3.9158816	4.8199886	

9. Go to the **Specifications** step.

Step 2: Perform the Nominal Run

1. In the work area, set the Mode to Nominal Run.

	Mode		Label	Varname	Details
1	\odot	I I	Nominal Run	Nom	Run system at nominal values
2	0	ŧ.∎Ĩ	System Bounds Check	Chk	Run system at nominal values, then lower and upper values
					Show more

- 2. Click Apply.
- 3. Go to the **Evaluate** step and click **Evaluate Tasks**.
- 4. Go to the **Define Output Responses** step.

Step 3: Review the Output Responses

1. Review the two output responses that were imported from the study.csv file.

	Active	Label	Varname	Expression	Value	Comment
1	\checkmark	Resp1	r_1	ds_1[0]	8.0174200	
2	\checkmark	Resp2	r_2	ds_2[0]	-1.5008200	

2. Go to the **Post-Processing** step.

Step 4: Import the DOE Results from the .csv File

- 1. In the Explorer, right-click and select **Add** from the context menu.
- 2. In the Add HyperStudy dialog, select DOE and click OK.
- 3. Go to the **Specifications** step.
- 4. In the work area, set the Mode to **Run Matrix**.
- 5. From the Settings tab, Matrix File field, click 📂.
- 6. In the **Open** dialog, navigate to your working directory and open the study.csv file.

- 7. Click Apply.
- 8. Go to the **Evaluate** step and click **Evaluate Tasks**.

Step 5: Create a Fit (Approximation)

- 1. In the Explorer, right-click and select **Add** from the context menu.
- 1. In the Add HyperStudy dialog, select Fit and click OK.
- 2. Go to the **Select Matrices** step.
- 3. Add matrix.
 - a. Click Add Matrix.
 - b. In the Add HyperStudy dialog, add one matrix.
- 4. Click Import Matrix.
- 5. Go to the **Specifications** step.

- 6. Verify that the Fit Type assigned to each output response is FAST Fit Automatically Selected by Training.
 - **Note:** By default, FAST automatically selects the best Fit type from all available Fits. You can manually select the Fit types FAST can choose by highlighting one or more responses in the work area and selecting Fits from the Settings tab.

	Label	Fit Type	Fit Specifics
1	🔏 Resp1	💐 FAST - Fit Automatically Selected by Training	LSR / MLSM / RBF
2	🔏 Resp2	Ҟ FAST - Fit Automatically Selected by Training	LSR / MLSM / RBF

- 7. Click Apply.
- 8. Go to the **Evaluate** step and click **Evaluate Tasks**.
- 9. Go to the **Post-Processing** step.
- 10. Click the **Diagnostics** tab.

Resp1 has the best Fit using LSR with custom terms; the Regression Terms tab shows that only linear terms are required. Resp2 has the best results using a MLSM. For Resp2, the R-square value that is based on the Input Matrix shows that the model accuracy is very good. The moderate value for the cross validation indicates that the model may benefit from more data because its accuracy is quite dependent on the complete set of point. Removing any points from the input set can significantly alter the Fit's predictions.

	Label	Fit Type	Fit Specifics	X R-Square		
1	_{x Resp1}	🖊 LSR	Custom	1.0000000		
2		MLSM	linear - 5.9883612	0.5051583		
	Detailed Diag	gnostics	Regression Terms	<i>f()</i> Regression	Equation	ANOVA
	Criterion		I Input Matrix	X Cross-Vali	dation Matrix	∃¥ Testing Matrix
1	1 R-Square		0.9959063	0.5051583		N/A
2	2 Relative Average Absolute Error		or 0.0322481	0.4789133		N/A
3	Maximum Abs	olute Error	0.1793161	1.2614781		N/A
4	Root Mean Sq	uare Error	0.0506083	0.5564140		N/A
5	Number of Sa	mples	16	16		0

