

altairhyperworks.com

HS-1710: Simple Optimization Study

This tutorial demonstrates how to optimize a simple function defined using a Templex template. The base input template defines two input variables, DV1 and DV2, labeled X and Y, respectively. The objective of the optimization is to minimize X + Y with the constraint 1/X + 1/Y - 2 < 0.

Before running this tutorial, you must complete tutorial HS-1010: Simple DOE Study (or HS-1700: Simple DOE Study, HS-1705: Simple Fit Study) or you can import the archive file HS-1705.hstx, available in <hst.zip>/HS-1710/.

Step 1: Run an Optimization Study

- 1. In the **Explorer**, right-click and select **Add** from the context menu.
- 2. In the Add HyperStudy dialog, select *Optimization* and click *OK*.
- 3. Go to the Select Input Variables step.
- 4. Review the input variable's lower and upper bound ranges.
- 5. Go to the Select Output Responses step.
- 6. Click Add Objective.
- 7. In the **Add HyperStudy** dialog, add one objective.
- 8. Define the objective.
 - a. Set Type to Minimize.
 - b. Set Apply On to *Response 1 (r_1)*.

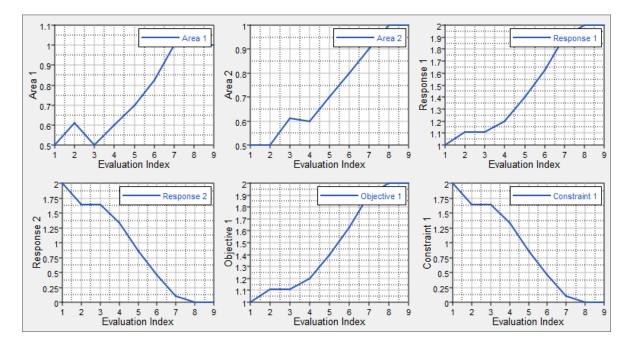
	Active	Label	Varname	Туре	Apply On	Evaluate From
1	v	Objective 1	obj_1	Minimize 🔻	Response 1 (m_1_r_1) 💌	SOLVER 👻

- 9. Click the *Constraint* tab.
- 10. Click Add Constraint.
- 11. In the **Add HyperStudy** dialog, add one constraint.
- 12. Define the constraint.
 - a. Set Apply On to *Response 2 (r_2)*.
 - b. Set **Bound Type** to **<=** (greater than or equal to).
 - c. In the Bound Value column, enter 0.0.

	Active	Label	Varname	Туре	Apply On	Bound Type	Bound Value
1	V	Constraint 1	c_1	Deterministic 👻	Response 2 (m_1_r_2) 💌	<= •	0.0000000

- 13. Click Apply.
- 14. Go to the **Specifications** step.

- 15. In the work area, set the Mode to *Adaptive Response Surface Method (ARSM)*.Note: Only the methods that are valid for the problem formulation are enabled.
- 16. Click Apply.
- 17. Go to the **Evaluate** step.
- 18. Click *Evaluate Tasks*.
- 19. Optional. Click the different tabs in the **Evaluate** step to monitor the progress of the Optimization.
- 20. After the optimization has finished, review the optimization history first.
- 21. With many of the algorithms (SQP, GA, ...), each iteration requires many evaluations.
 - **Evaluation** (plots or tables) show all runs performed during the optimization.
 - **Iteration** (plots or tables) show the optimization iterations.


The **Iteration History** tab uses color coding to indicate which design are feasible, optimal, and violated.

- White background/black font indicates the design is feasible.
- White background/red font indicates the design is violated.
- White background/orange font indicates the design is acceptable, but at least one constraint is near violated.
- Green background/white font indicates the design is optimal.
- Green background/orange font indicates the design is optimal, but at least one constraint is near violated.

	"]+ Area 1	¶+ Area 2	🕼 Response 1	_K Response 2	¥ Objective 1	🛃 Constraint 1	Iteration Index	Evaluation Reference	Iterati
1	0.5000000	0.5000000	1.0000000	2.0000000	1.0000000	2.000000	1	1	1
2	0.6100000	0.5000000	1.1100000	1.6393400	1.1100000	1.6393400	2	2	2
3	0.5000000	0.6100000	1.1100000	1.6393400	1.1100000	1.6393400	3	3	3
4	0.5999999	0.5999999	1.2000000	1.3333300	1.2000000	1.3333300	4	4	4
5	0.6999999	0.6999997	1.4000000	0.8571440	1.4000000	0.8571440	5	5	5
6	0.8254987	0.7999997	1.6255000	0.4613890	1.6255000	0.4613890	6	6	6
7	1.0023912	0.9003989	1.9027900	0.1082330	1.9027900	0.1082330	7	7	7
8	1.0000883	0.9999133	2.0000000	-1.57e-06	2.0000000	-1.57e-06	8	8	8
9	0.9999097	1.0000903	2.000000	5.26e-08	2.000000	5.26e-08	9	9	9
•									

- 22. The **Evaluation Plot** tab displays charts for all of the entities in the optimization (input variables, output responses, objective functions, constraints) against the iteration.
 - Select entities to plot using the **Channel** selector in the left pane.
 - Plot multiple entities in separate windows by clicking \blacksquare .

23. Go to the **Post-Processing** step.

Step 2: Post-Processing of an Optimization Study

In the **Post-Processing** step of an Optimization approach, you can access additional tools to review the results. Use the **Integrity**, **Distribution**, and **Scatter** tabs to compare and analyze designs.

	Label	Varname	Category	Variance	Std. Dev.	Avg. Dev.	CoV.	Skewness	Kurtosis	RMS
1	Area 1	m_1_DVAR1	Variable	0.0454980	0.2133026	0.1851714	0.2849148	0.1943044	-1.8966867	0.7751940
2	Area 2	m_1_DVAR2	Variable	0.0396945	0.1992349	0.1694324	0.2712565	0.2457702	-1.6251689	0.7581281
3	_x Response 1	m_1_r_1	Response	0.1662041	0.4076814	0.3546037	0.2748766	0.2679505	-1.9156419	1.5321394
4	_x Response 2	m_1_r_2	Response	0.6164650	0.7851528	0.6753825	0.8790364	0.0937966	-1.8610013	1.1600733
5	↓ Objective 1	obj_1	Objective	0.1662041	0.4076814	0.3546037	0.2748766	0.2679505	-1.9156419	1.5321394
6	Constraint 1	c_1	Constraint	0.6164650	0.7851528	0.6753825	0.8790364	0.0937966	-1.8610013	1.1600733

1. Click the **Integrity** tab to analyze statistics of the optimization study.

