

altairhyperworks.com

HS-1705: Simple Fit Study

This tutorial demonstrates how to run a DOE study on simple functions defined using a Templex template.

The base input template defines two input variables; DV1 and DV2, labeled X and Y, respectively. The objective of the study is to investigate the two input variables X, Y forming the two functions: X+Y and 1/X + 1/Y - 2.

Before running this tutorial, you must complete tutorial HS-1700: Simple DOE Study or you can import the archive file HS-1700.hstx, available in <hst.zip>/HS-1705/.

Step 1: Run a Space Filling DOE Study

- 1. In the **Explorer**, right-click and select **Add** from the context menu.
- 2. In the Add HyperStudy dialog, select DOE and click OK.
- 3. Go to the **Specifications** step.
- 4. In the work area, set the **Mode** to *Hammersley*.
- 5. Click *Apply*.
- 6. Go to the **Evaluate** step.
- 7. Click *Evaluate Tasks*. The evaluation results display in the work area.
- 8. Go to the **Post-Processing** step.
- 9. Click the *Scatter* tab to view a plot which illustrates the dependency between Area 2 and Response 1 and Response 2.
 - a. Using the **Channel** selector, set the **X Axis** to **Area 2** and the **Y Axis** to both **Response 1** and **Response 2**.
 - b. Compare the scatter plots to determine if the runs are distributed homogeneously throughout the design space.

Step 2: Run a FIT Study

- 1. In the **Explorer**, right-click and select *Add* from the context menu.
- 1. In the Add HyperStudy dialog, select *Fit* and click *OK*.
- 2. Go to the **Select Matrices** step.
- 3. Click *Add Matrix*.
- 4. In the **Add HyperStudy** dialog, add one matrix.
- 5. In the work area, set Matrix Source to Doe 2 (doe_2).

 Active
 Label
 Varname
 Type
 Matrix Source
 Matrix Origin
 Status

 1
 Image: Status
 fitmatrix_1
 Input Image: DOE2(doe_2)
 DoeDOE2
 Import Pending

- 6. Click *Import Matrix*.
- 7. Go to the **Specifications** step.
- 8. In the work area, set the Mode to Least Squares Regression (LSR).
- 9. Click Apply.
- 10. Go to the **Evaluate** step.
- 11. Click *Evaluate Tasks*.
- 12. Go to the **Post-Processing** step.
- 13. Click the **Residuals** tab to review the residuals of both output responses.

The data in the table shows the differences in the actual values and the predictions from the constructed Fit. The **Percent Error** column of Response_1 is numerically zero for all six runs; whereas the **Percent Error** column of Response_2 is up to 35%. The LSR fitting for Response_1 is acceptable, but the LSR fitting for Response_2 is rather large.

14. Click the **Diagnostics** tab to review the overall Fit quality.

Several measures are shown to indicate the relative quality of the Fit. The **R-Square** value can be interpreted as the percentage of variance in the data that can be explained by the Fit. For Response_1, the Fit captures 100% of the data variance; this makes sense as Response_1 is actually a linear function so the first order regression matches the actual data with no error. For Response_2, it is shown below that the Fit explains about 90% of the variance.

	Criterion		Input Matrix		Cross-Validation Matrix		x Validation Matrix		
1	R-Square		1.0000000		1.0000000		N/A		
2	R-Square Adjusted		1.0000000		N/A		N/A		
3	Multiple R		1.0000000		1.0000000		N/A		
4	Relative Average Absolute Error		9.93e-07		1.63e-06		N/A		
5	Maximum Absolute Error		3.68e-06		5.32e-06		N/A		
6	Root Mean Square Error		2.45e-06		3.85e-06		N/A		
7	Number of Sample	25	7		7		0		
	f() Regression Equation								
	Terms	Lower	Values	Uppe	r Standard	Error t-v	/alue	p-value	
1	intercept	-6.91e-06	2.19e-06	1.13e-05	3.28e-06	0.667	1520	0.5411901	
2	m_1_DVAR1^1	0.9999962	0.9999989	1.000001	5 9.57e-07	1044	608.5	5.04e-24	
3	m_1_DVAR2^1	0.9999973	1.0000003	1.000003	3 1.09e-06	9140	33.71	8.60e-24	

15. With first order least squares, you have a Fit which explains most of the data's variance, but it still has a relatively high prediction error. Go back to the **Specifications** step and try different methods until you find an acceptable fitting for both output responses.

