

altairhyperworks.com

HS-1615: Setting Up a FEKO Model

The purpose of this tutorial is to illustrate the information and steps required to setup a FEKO model in HyperStudy.

The model used in this tutorial is a waveguide transmission line that is being fed with a coaxial cable.

The effect of the cable's pin position on input impedence is studied. When the impedence is reduced, this leads to improved power transmission.

The files used in this tutorial can be found in <hst.zip>/HS-1615/. Copy the tutorial files from this directory to your working directory. The tutorial directory includes the following files:

- waveguide_pin_feed_placement.cfx
- waveguide_pin_feed_placement.cfx_extract.lua

Step 1: Perform the Study Setup

- 1. Start HyperStudy.
- 2. To start a new study, click *File* > *New* from the menu bar, or click *on the toolbar*.
- In the HyperStudy Add dialog, enter a study name, select a location for the study, and click OK.
- 4. Go to the **Define models** step.
- 5. Add a FEKO model by dragging-and-dropping the waveguide_pin_feed_placement.cfx from the **Directory** into the work area.

The **Resource**, **Solver input file**, and **Solver input arguments** fields become populated.

🖯 A	S Add Model 🛛 Remove Model										
Act	tive	Label	Varname	Model Type	Resource	Solver input file	Solver execution script	Solver input arguments			
1 🗸	м	lodel 1	m_1	FEKO 💧	C:/waveguide_pin_feed_placement.cfx 😭	waveguide_pin_feed_placement.cfx	FEKO (feko) 🛛 🔻	\$filebasename			

- 6. Click *Import Variables*. Ten input variables are imported from the waveguide_pin_feed_placement.cfx file.
- 7. Go to the **Define Input Variables** step, and review the input variables.

	Active	Label	Varname	Lower Bound	Initial	Upper Bound	Comment	
1	v	freq	dv_1	9.00e+09	1.00e+10	1.10e+10	Centre frequency	
2	v	lambda	dv_2	26.981321	29.979246	32.977170	Free space wavelength in millimitres	
3	1	n	dv_3	5.4000000	6.0000000	6.6000000	Feed pin position index	
4	v	pin_length	dv_4	6.0707973	6.7453303	7.4198633	Length of pin feed monopole	
5	1	pin_offset	dv_5	5.0589977	5.6211086	6.1832194	Pin offset from waveguide tip	
6	1	pin_step_size	dv_6	0.8431663	0.9368514	1.0305366	Distance between pin positions	
7	1	radius	dv_7	0.0900000	0.1000000	0.1100000	Radius of pin wires	
8	1	waveguide_length	dv_8	53.962642	59.958492	65.954341	Length of waveguide section	
9	1	wr90_height	dv_9	9.1440000	10.160000	11.176000	Waveguide height for WR90 (X-Band)	
10	√	wr90_width	dv_10	20.574000	22.860000	25.146000	Waveguide width for WR90 (X-Band)	

8. Go to the **Specifications** step.

Step 2: Perform the Nominal Run

- 1. In the work area, set the **Mode** to **Nominal Run**.
- 2. Click **Apply**.
- 3. Go to the **Evaluate** step.
- 4. Click *Evaluate Tasks*. An approaches/nom_1/ directory is created inside the study directory.
- 5. Go to the **Define Output Responses** step.

Step 3: Create and Define Output Responses

In this step you will create two output responses.

- 1. Create output response 1.
 - a. From the **Directory**, drag-and-drop the hst_output.hstp file, located in approaches/nom_1/run_00001/m_1, into the work area.

Explorer	E Directory			🕼 De	fine Response	s		
Name		-		🔂 Ad	ld Response	Remov	e Response	File Assis
	waveguide_pin_feed_placement.cf							-
	waveguide_pin_feed_placement.cf	n		Active	Label	Varname	Express	sion
	🐌 waveguide_pin_feed_placement.bo	f			h - t t t - l			
	hst_output.hstp				nst_output.r	nstp	k	
	hst_input.hstp						+	
	nom 1 hetdf		1					

b. In the **File Assistant** dialog, click **Next**.

- c. Select *Single item in a time series*, then click *Next*.
- d. Define the following, then click **Next**.
 - Set **Type** to **Output**.
 - Set **Request** to *z_Imag*.
 - Set Component to Value.

✓ File Assistant											
Single serial or time series											
File:	/approaches/nom_1/run_00001/m_1/hst_output.hs	tp »									
Subcase:		Filter									
Туре:	Output 👻	Filter									
Request:	z_Imag 🗸	Filter									
Component:	Value 🗸	Filter									
	< Back	Next > Cancel									

- e. Optional. Enter labels for the data source and output response.
- f. Set the output response **Expression** to **Maximum**.

🗹 File Assistant											
Link File to a Response											
Creating	Creating a new Vector Source										
	Label: V	/alue - z_Imag - Output									
>	Varname: n	n_1_v_1									
🔽 Linke	ed to a new Re	sponse									
	Label:	Response 1									
	Varname:	m_1_r_1									
	Comment:	Value - z_Imag - Output									
Expression: max(m_1_v_1) Maximum											
< Back Finish Cancel											

- g. Click *Finish*. Output response 1 is added to the work area.
- 2. Create output response 2 by repeating step 1. Except, set **Request** to *z_Real*.

	Active	Label	Varname	Expression	Value	Comment
1	V	Response 1	m_1_r_1	max(m_1_v_1)	Not_Extracted	Value - z_Imag - Output …
2	V	Response 2	m_1_r_2	max(m_1_v_2)	Not_Extracted	Value - z_Real - Output

Step 4: Run a DOE Sweep Study

- 1. In the **Explorer**, right-click and select **Add** from the context menu.
- 2. In the Add HyperStudy dialog, add a Doe.
- 3. Go to the **Select Input Variables** step.
- 4. This tutorial is only studying the effects from the variation of the pin position index, therefore deactivate all input variables except **n**.

	Active	Label	Varname	Lower
1		freq	dv_1	9.00e+
2		lambda	dv_2	26.981
3	V	n	dv_3	5.4000
4		pin_length	dv_4	6.0707
5		pin_offset	dv_5	5.0589
6		pin_step_size	dv_6	0.8431
7		radius	dv_7	0.0900
8		waveguide_le	dv_8	53.962
9		wr90_height	dv_9	9.1440
10		wr90_width	dv_10	20.574

- 5. Go to the **Specifications** step.
- 6. In the work area, set the **Mode** to *Hammersley*.
- 7. In the Settings tab, change the Number of runs to 21.
- 8. Click Apply.
- 9. Go to the **Evaluate** step.
- 10. Click *Evaluate Tasks* to execute all 21 runs.

Step 5: Run a Fit Study

- 1. In the **Explorer**, right-click and select **Add** from the context menu.
- 2. In the Add HyperStudy dialog, add a Fit.
- 3. Go to the **Select matrices** step.
- 4. Click *Add Matrix*.
- 5. In the Add HyperStudy dialog, add one matrix.
- 6. Set Matrix Source to Doe 1 (doe_1).

	Active	Label	Varname	Туре	Matrix Source	Matrix Origin	Status
1	√	FitMatrix 1	fitmatrix_1	Input 👻	Doel(doe_1) 💌	DoeDoe 1	Import Pending

- 7. Click Import Matrix.
- 8. Go to the **Specifications** step.
- 9. In the work area, set the **Mode** to **Radial Basis Function**.
- 10. Click Apply.
- 11. Go to the **Evaluate step**.
- 12. Click *Evaluate Tasks*.
- 13. Go to the **Post-Processing** step.
- 14. Click the **Trade-Off** tab to plot the response surface.

