

altairhyperworks.com

HS-1060: Linking Variables of a Model to Output Responses of Other Models

In this tutorial you will learn how to link variables of a model to output responses of other models. The input variables are the thickness of each of the three components, defined in the input deck via the PSHELL card. The thickness should be between 0.05 and 0.15; the initial thickness is 0.1 (shown below).

The sample base input template files used in this tutorial can be found in <hst.zip>/HS-1060/. Copy the file from this directory to your working directory.

Figure 1: Double Symmetric Plate Model

Step 1: Perform the Study Setup

- 1. Start HyperStudy
- 2. To start a new study, click **File** > **New** from the menu bar, or click \square on the toolbar.
- 3. In the **HyperStudy Add** dialog, enter a study name, select a location for the study, and click **OK**.
- 4. Go to the **Define Models** step.
- 5. Add a Parameterized File model.
 - a. From the **Directory**, drag-and-drop the plate.tpl file into the work area.

Explorer	<u>t</u>	Directory			\$	Define Mo	odels	
Name		Size	Туре	Date Modifi				
4 퉬 C:\HS-1	060					Add Model	×	Remove Model
_{stud}	y_lock.xml	858 bytes	Study Lock	6/29/2017 4:	Active	Label	Varname	Model Typ
🔳 plat	e.tpl	101 KB	tpl File	6/15/2017 5:	Active	Laber	varriarrie	iniodel typ
⊳ 퉬 _usr			Settings Folder	6/29/2017 4:	ź	plate.tpl		
📄 Stud	y_1.xml	3 KB	xml File	6/29/2017 4: ;			K F	
🗹 Cos	.xls	17 KB	xls File	6/15/2017 5:				

- b. In the **Solver input file** column, enter plate.fem. This is the name of the solver input file HyperStudy writes during any evaluation.
- c. In the **Solver execution script** column, select **OptiStruct (os)**.
- 6. Add a Spreadsheet model by dragging-and-dropping Cost.xls file from the **Directory** into the work area.

The **Resource**, **Solver input file**, and **Solver input arguments** fields become populated. The **Solver input file** field displays hst_input.hstp, this is the name of the solver input file HyperStudy writes during an evaluation.

Note: When you create an Excel spreadsheet model, it is important that you format it correctly. A variable's value and label can be formatted in two consecutive rows or two consecutive columns. Variable labels should only contain English characters, or a combination of English characters and numbers. If you do not create a label for a variable, HyperStudy will assign one by default.

Ad	tive	Label	Varname	Model Type	Resource	Solver input file	Solver execution script	Solver input arguments
1 [V	Model 1	m_1	{ } Parameter	C://HS-1060/plate.tpl	plate.fem	OptiStruct (os)	S{file}
2 [V	Model 2	m_2	X Spreadsheet	C://HS-1060/Cost.xls 📂	hst_input.hstp	X SpreadSheet (SpreadSheet_HST)	0

- 7. Click *Import Variables*. The cost.xls spreadsheet opens.
- 8. Add input variables.
 - a. In the **Excel HyperStudy** dialog, click **Yes** to begin selecting input variables.

Excel - HyperStudy	23
Proceed to selecting Input(s)?	
Yes No	

b. In the spreadsheet, select the cells that contain the input variable's labels and values.

Inputs		
Mass_Excel	0.2	Excel - HyperStudy Input selector
Cost Coef	10000	Select Design Variable(s).
Output		-
Cost	2000	Hit Cancel when finished selecting items. \$A\$2:\$B\$3
		OK Cancel

- c. In the Excel HyperStudy Input selector dialog, click OK.
- d. Click *Cancel* to stop selecting input variables.
- 9. Add output responses.
 - a. In the **Excel HyperStudy** dialog, click **Yes** to begin selecting output responses.
 - b. In the spreadsheet, select the cells that contain the output response's label and value.

Inputs		
Mass_Excel	0.2	Excel - HyperStudy Output selector
Cost Coef	10000	
		Select Response(s)
Output		beleet response(s).
Cost	2000	Hit Cancel when finished selecting items.
		\$A\$5:\$B\$6
		OK Cancel

- c. In the Excel HyperStudy Output selector dialog, click OK.
- d. Click **Cancel** to stop selecting output responses. Two input variables and one output response are imported from the cost.xls spreadsheet.
- 10. Go to the **Define Input Variables** step.
- 11. Review the input variable's upper and lower bound ranges.
- 12. Go to the **Specifications** step.

Step 2: Perform the Nominal Run

- 1. In the work area, set the **Mode** to **Nominal Run**.
- 2. Click *Apply*.

- 3. Go to the **Evaluate** step.
- 4. Click *Evaluate Tasks*.
- 5. Go to the **Define Output Responses** step.

Step 3: Create and Define Output Responses

In this step you will create two output responses: Mass and Displacement.

- 1. Create the Mass output response.
 - a. From the **Directory**, drag-and-drop the plate.out file, located in approaches/nom_1/run_00001/m_1, into the work area.
 - b. In the File Assistant dialog, set the Reading technology to *Altair*® *HyperWorks*® and click *Next*.
 - c. Select Single item in a time series, then click Next.
 - d. Define the following options, and then click **Next**.
 - Set **Type** to *Mass*.
 - Set **Request** to *Mass*.
 - Set Component to Value.

🚽 File Assistant	t 💌						
Single serial or time series							
Subcase:							
Type:	Mass						
Request:	Mass Filter						
Component:	Value 🗸						
✓ Preview:	2.00000E-006 1.90000E-006 1.80000E-006 1.70000E-006 0.90 0.95 1.00 1.05 1.10 Index						
	< Back Next > Cancel						

e. Label the output response Mass.

f. Set Expression to *First Element*.

Note: Because there is only a single value in this data source, [0] is inserted after m_1_ds_1, thereby choosing the first (and only) entry in the data source.

₫	File Assistan	ıt		x			
Create a Data Source and a Response							
Creating a new Data Source							
	Label: Data Source 2						
	Varname: m_1_ds_1						
	🔽 Linked t	o a new Resp	ponse				
	•	Label:	Mass				
		Varname:	m_1_r_1				
		Comment:	Data Source 2				
		Expression	m_1_ds_1[0] First Element				
			< Back Finish Cance				

- g. Click *Finish*. The Mass output response is displayed in the work area.
- 2. Create the Displacement output response.
 - a. From the **Directory**, drag-and-drop the plate.h3d file, located in approaches/nom_1/run_00001/m_1, into the work area.
 - b. In the **File Assistant** dialog, set the **Reading technology** to **Altair**® **HyperWorks**® and click **Next**.
 - c. Select Single item in a time series, then click Next.
 - d. Define the following options, and then click **Next**.
 - Set Subcase to Subcase 1 (Load).
 - Set Type to Displacement (Grids).
 - Set **Request** to **N298**.
 - Set **Component** to **MAG**.
 - e. Label the output response Displacement.
 - f. Set **Expression** to *First Element*.

1	File Assistan	t		×					
	Create a Data Source and a Response								
	Creating a new Data Source								
	Label: Data Source 3								
	Varname: m_1_ds_2								
	🔽 Linked t	o a new Resp	onse						
	•	Label:	Displacement						
		Varname:	m_1_r_2						
		Comment:	Data Source 3						
		Expression:	m_1_ds_2[0] First Element						
-	< Back Finish Cancel								

g. Click *Finish*. The Displacement output response is added to the work area.

3. Click *Evaluate* to extract the output response values.

	Active	Label	Varname	Expression	Value	Comment
1	v	Cost	r_1	ds_1[0]	2000.0000	
2	v	Mass	m_1_r_1	m_1_ds_1[0]	1.83e-06	Data Source 2
3	v	Displacement	m_1_r_2	m_1_ds_2[0]	0.0024906	Data Source 3

Step 4: Linking Mass_Excel Input Variable of Model 2 to Mass Output Response of Model 1

- 1. In the **Explorer**, click **Define Input Variables**.
- 2. Click the *Links* tab.
- 3. In the Expression column of the input variable Mass_Excel, click ***.
- 4. In the **Expression Builder**, click the **Output Responses** tab.
- 5. Select the output response *Mass*.
- 6. Click *Insert Varname*. The expression m_1_r_1 appears in the *Evaluate Expression* field.

7. Click **OK**. The input variable **Mass_Excel** of **Model 2** is now linked to the output response **Mass** of **Model 1**.

	Active	Label	Varname	Expression
1	V	tl	m_1_Variable_01	
2	V	t2	m_1_Variable_02	
3	V	t3	m_1_Variable_03	
4	V	Mass_Excel	var_4 🥜	m_1_r_1
5	V	Cost Coef	var_5	

- 8. Go to the **Specifications** step.
- 9. In the work area, set the **Mode** to **System Bounds Check**.
- 10. Click Apply.
- 11. Go to the **Evaluate** step.
- 12. Click *Evaluate Tasks*.
- 13. Click the *Evaluation Data* tab.
- 14. Verify that the input variable **Mass_Excel** is equal to the output response **Mass**.

	"]+ t1	<mark>"]+</mark> t2	∐ + t3	"]+ Mass_Excel	"]+ Cost Coef	🕼 Cost	💃 Mass	_{Zx} Displacement
1	0.1000000	0.1000000	0.1000000	1.83e-06	10000.000	0.0183045	1.83e-06	0.0024906
2	0.0900000	0.0900000	0.0900000	1.65e-06	9000.0000	0.0148267	1.65e-06	0.0027674
3	0.1100000	0.1100000	0.1100000	2.01e-06	11000.000	0.0221485	2.01e-06	0.0022642

Last modified: v2017.2 (12.1156684)

