

altairhyperworks.com

HS-1050: Minimization of External Rosenbrock Function

In this tutorial, you will learn how to use Compose or Python within an Optimization study. The example consists of optimizing a 2-dimensional Rosenbrock function. You will be using either Compose or Python as the solvers for HyperStudy. This example defines two input variables, labeled x and y, respectively. The objective of the optimization is to minimize $f(x, y) = 100*(y-x^2)^2 + (1-x)^2$. The range for x and y is set to [-2; -2], and the start point is [-1; -1].

The files used in this tutorial can be found in <hst.zip>/HS-1050/. Copy the tutorial files from this directory to your working directory.

Step 1: Perform the Study Setup

- 1. To start a new study, click **File** > **New** from the menu bar, or click \blacksquare on the toolbar.
- In the HyperStudy Add dialog, enter a study name, select a location for the study, and click OK.
- 3. Go to the **Define models** step.
- 4. Add a Parameterized File model.
 - a. From the **Directory**, drag-and-drop the appropriate .tpl file into the work area.
 - If you are using Python, use the rosenbrock_py.tpl file.
 - If you are using Compose, use the rosenbrock_oml.tpl file.

	Explorer	Direct	tory			<i>s</i> 1	Define M	odels	
Na	me		Size	Туре		_			_
4 🏢	C:\HS-105	0				Ð	Add Mode	1	Remove I
	🝝 study_	lock.xml	858 bytes	Study Lock	4	Active	Label	Varnar	ne Mode
	🔳 rosenb	rock_py.tpl	345 bytes	tpl File	-		Luber	Tarria	
	rosenb	rock_hml.tpl	326 bytes	tpl File		_			_
\triangleright	🌗 _usr			Settings Folder	÷	11	rosenbro	ck_py.tp	2
	Study_	1.xml	3 KB	xml File					Ð

- b. In the **Solver input file** column, enter a name for the solver input file HyperStudy writes during any evaluation.
 - If you are using Python, enter rosenbrock.py.
 - If you are using Compose, enter rosenbrock.oml.
- c. In the **Solver execution script** column, select either **Python (py)** or **Compose** (*oml*) accordingly.
 - **Note:** If you are using Compose as part of the HyperWorks suite, then HyperStudy should automatically point to the correct .bat file. If you have Compose as separate installation, then during the **Register Solver Script** step you should point to Compose_batch.bat.
- d. If you are using Compose as the Solver execution script, in the **Solver input arguments** column, enter -f infront \${file}.

- **Note:** For solver scripts running on Linux, enter "-f \${file} -nobg" in the **Solver input arguments** column to ensure that the Compose batch mode runs in the foreground instead of the background.
- 5. Click *Import Variables*. Two input variables are imported from the .tpl file.
- 6. Go to the **Define Input Variables** step.
- 7. Change both input variable's lower, initial and upper bounds to the values indicated in the image below.

	Active	Label	Varname	Lower Bound	Nominal	Upper Bound
1	1	x	m_1_varname_1	-2.0000000	-1.0000000	2.0000000
2	1	у	m_1_varname_2	-2.0000000	-1.0000000	2.0000000

8. Go to the **Specifications** step.

Step 2: Perform the Nominal Run

- 1. In the work area, set the **Mode** to **Nominal Run**.
- 2. Click **Apply**.
- 3. Go to the **Evaluate** step.
- 4. Click *Evaluate Tasks*.
- 5. Go to the **Define Output Responses** step.

Step 3: Create and Define Output Responses

In this step you will create one output responses.

- 1. Create the output response.
 - a. From the **Directory**, drag-and-drop the <code>rosenbrock.res</code> file, located in the <code>approaches/nom_1/run_00001/m_1</code> directory, into the work area.
 - b. In the **File Assistant** dialog, set the **Reading technology** to **Altair**® **HyperWorks**® and click **Next**.
 - c. Select **Single item in a time series**, then click **Next**.
 - d. Define the following options, and then click **Next**.
 - Set **Type** to *unknown*.
 - Set **Request** to **Block 1**.
 - Set Component to Column 1.

🔬 File Assistan	t 💌							
Single se	Single serial or time series							
Subcase:								
Type:	Unknown 🔻							
Request:	Block 1 Filter 🛛 🗸 🗸							
Component:	Column 1 🔹							
☑ Preview:	12.8 12.3 11.8 11.3 10.8 10.3 0.900.930.950.981.001.031.051.081.10 Index							
	<back next=""> Cancel</back>							

- e. **Optional**. Enter labels for the data source and output response.
- f. Set **Expression** to *First Element*. The expression changes to $m_1_ds_1[0]$.

🔮 File Assistar	nt		×				
Create a Data Source and a Response							
Creating a new Data Source							
	Label: Data Source 1						
>	Varname: m_1_ds_1						
✓ Linked to a new Response							
	Label:	Response 1					
	Varname: m_1_r_1						
	Comment:	Data Source 1					
	Expression:	m_1_ds_1[0] First Element 🔻					
< Back Finish Cancel							
			.d				

g. Click *Finish*. Output response 1 is added to the work area. 2. Click *Evaluate*. The value for expression m_1_ds_1[0] should be 404.0.

Step 4: Run an Optimization Study

- 1. In the **Explorer**, right-click and select **Add** from the context menu.
- 2. In the Add HyperStudy dialog, select Optimization and click OK.
- 3. Go to the Select Input Variables step.
- 4. Review the input variable's lower and upper bound ranges.
- 5. Go to the Select Output Responses step.
- 6. Add an objective to Response 1.
 - a. In the **Objectives** column of Response 1, click **•**.
 - b. In the pop-up window, set **Type** to *Minimize* and click *OK*.

Active	Label	Varname	Objectives	Constraints	Evaluate From	Expression	Comment
1 🗸	Response 1	m_1_r_1	Minimize	0	> Solver	m_1_ds_1[0]	Data Source 1

- 7. Click Apply.
- 8. Go to the **Specifications** step.
- 9. In the work area, set the Mode to Adaptive Response Surface Method (ARSM).

Note: Only the methods that are valid for the problem formulation are enabled.

- 10. Click Apply.
- 11. Go to the **Evaluate** step.
- 12. Click *Evaluate Tasks*.
- 13. **Optional**. Click the *Iteration Plot* tab to monitor the progress of the optimization.

The iteration history shows a significant reduction in the objective value. The Rosenbrock function has a global minimum that is difficult for any optimizer to find due to its flatness in the area of the true optimum, and ARSM has not found the theoretical solution at (x,y)=(1,1).

Last modified: v2017.2 (12.1156684)

