

altairhyperworks.com

# HS-1030: Parameterize a MotionView Model

In this tutorial you will learn how to use HyperStudy to perform an optimization with MotionSolve. The input variable is the angle q (swing angle) of the pendulum. The output response target is to achieve Y-velocity of 6m/s at the tip of the pendulum. At the end of this tutorial, you will know how to:

- Use MotionView to start HyperStudy and create the input variables.
- Setup a study.
- Run a system identification optimization study.

The files used in this tutorial can be found in <hst.zip>/HS-1030/. Copy the tutorial files from this directory to your working directory.



# **Step 1: Perform the Study Setup**

- 1. Start HyperStudy.
- 2. To start a new study, click *File* > *New* from the menu bar, or click *on the toolbar*.
- 3. In the **HyperStudy Add** dialog, enter a study name, select a location for the study, and click **OK**.
- 4. Go to the **Define Models** step.
- 5. Add a MotionView model.
  - a. From the **Directory**, drag-and-drop the MotionView (.mdl) file Pendulum.mdl into the work area.



| Explorer            | t D      | irectory  |                 |     | ر ک    | Define Mo | dels      |              |
|---------------------|----------|-----------|-----------------|-----|--------|-----------|-----------|--------------|
| Name                |          | Size      | Туре            | Dat | _      |           |           |              |
| 4 鷆 C:\HS-103       | 0        | 0501      |                 |     | Đ      | Add Model | ×         | Remove Model |
| ≰ study_l           | lock.xml | 858 bytes | Study Lock      | 6/2 | Active | Label     | Varname   | Model Type   |
| ⊳ 🌆 _usr            |          | 2 1/12    | Settings Folder | 6/2 |        |           |           |              |
| Study_              | 1.xml    | D VD      | xml File        | 6/2 |        | Damakuluu | n .un all |              |
| 🛆 Pendulum.mdl 5 KB |          |           | mdl File        |     |        |           |           |              |
|                     |          |           |                 |     |        |           | Έ         |              |
|                     |          |           |                 |     |        |           |           |              |

b. In the **Solver input file** column, enter m1.xml. This is the name of the solver input file HyperStudy writes for any evaluation.



- 6. Click *Import Variables*.
- 7. In the **Model Parameter Tree** dialog, select parameters to import into HyperStudy.
  - a. Expand **SolverVariables** > **theta** > **value**, and select *lin* (scalar value for the swing angle).



- b. Click Add.
- c. Click OK.
- 8. Go to the **Define Input Variables** step.
- 9. In the work area, change the Lower Bound to 0 and the Upper Bound to 2.

| Activ | e Label         | Varname | Lower Bound | Nominal   | Upper Bound |  |
|-------|-----------------|---------|-------------|-----------|-------------|--|
| 1 🗸   | theta-value-lin | var_1   | 0.0000000   | 0.7000000 | 2.0000000   |  |

10. Go to the **Specifications** step.

## **Step 2: Perform the Nominal Run**

- 1. In the work area, set the **Mode** to **Nominal Run**.
- 2. Click Apply.
- 3. Go to the **Evaluate** step.
- 4. Click *Evaluate Tasks*. An approach/nom\_1/ directory is created inside the study directory. The approaches/nom\_1/run\_00001/m\_1 directory contains the .res file, which is the result of the nominal run.
- 5. Go to the Define Output Responses step.

#### **Step 3: Create and Define Output Responses**

In this step you will create one output response.

- 1. From the **Directory**, drag-and-drop the m1.mrf file, located in approaches/nom\_1/run\_00001/m\_1, into the work area.
- 2. In the **File Assistant** dialog, set the **Reading technology** to **Altair**® **HyperWorks**® and click **Next**.
- 3. Select **Single item in a time series**, then click **Next**.
- 4. Define the following options, and then click *Next*.
  - a. Set **Type** to *Marker Velocity*.
  - b. Set Request to REQ/7000002 tip velocity- (on Pendulum body).
  - c. Set **Component** to **VY**.





- 5. Optional. Enter labels for the data source and output response.
- 6. Set **Expression** to *Maximum*.

| 🗹 File Assistant                    |                      |             |                    |    |  |  |  |  |  |
|-------------------------------------|----------------------|-------------|--------------------|----|--|--|--|--|--|
| Create a Data Source and a Response |                      |             |                    |    |  |  |  |  |  |
| Creating a new Data Source          |                      |             |                    |    |  |  |  |  |  |
|                                     | Label: Data Source 1 |             |                    |    |  |  |  |  |  |
|                                     | >                    | Varname:    | m_1_ds_1           |    |  |  |  |  |  |
|                                     | 🔽 Linked t           | o a new Res | oonse              |    |  |  |  |  |  |
|                                     |                      | Label:      | Response 1         |    |  |  |  |  |  |
|                                     |                      | Varname:    | m_1_r_1            |    |  |  |  |  |  |
|                                     |                      | Comment:    | Data Source 1      |    |  |  |  |  |  |
|                                     |                      | Expression  | max(m_1_ds_1)      |    |  |  |  |  |  |
|                                     |                      |             |                    |    |  |  |  |  |  |
|                                     |                      |             | < Back Finish Canc | el |  |  |  |  |  |

7. Click *Finish*. The output response is displayed in the work area.

|   | Active   | Label      | Varname | Expression    | Value         | Comment       |  |  |
|---|----------|------------|---------|---------------|---------------|---------------|--|--|
| 1 | <b>v</b> | Response 1 | m_1_r_1 | max(m_1_ds_1) | Not Extracted | Data Source 1 |  |  |

8. Click *Evaluate* to extract the output response value.



# Step 4: Run an Optimization Study

- 1. In the **Explorer**, right-click and select **Add** from the context menu.
- 2. In the Add HyperStudy dialog, select *Optimization* and click *OK*.
- 3. Go to the Select Input Variables step.
- 4. Review the input variable's lower and upper bound ranges.
- 5. Go to the **Select Output Responses** step.
- 6. Apply an objective on Response 1.
  - a. In the **Objectives** column of Response 1, click **S**.
  - b. In the pop-up window, define the following settings and click **OK**.
    - Set **Type** to **System Identification**.
    - For Target Value, enter 6.0.

|   | Active | e Label Varname |         | Objectives            | Constraints | Evaluate From | Expression    | Comment       |  |
|---|--------|-----------------|---------|-----------------------|-------------|---------------|---------------|---------------|--|
| 1 | 1      | Response 1      | m_1_r_1 | System Identification | •           | > Solver      | max(m_1_ds_1) | Data Source 1 |  |

- 7. Click Apply.
- 8. Go to the **Specifications** step.
- In the work area, set the Mode to Adaptive Response Surface Method (ARSM).
  Note: Only the methods that are valid for the problem formulation are enabled.
- 10. Click Apply.
- 11. Go to the **Evaluate** step.
- 12. Click *Evaluate Tasks* to start the optimization.

## **Step 5: View the Iteration History of an Optimization Study**

- 1. Click the *Iteration History* tab to view a table with the Optimization's iteration results. The optimal design is highlighted in green.
- 2. Click the *Evaluation Plot* tab to compare all of the entities of the Optimization (input variables, output responses, and objectives) against the iteration.

Use the **Channel** selector to select all of the input variables, output responses, and objectives.





3. Go to the **Post-Processing** step.

## Step 6: Post-Processing of an Optimization Study

The **Post-Processing** step in an optimization approach offers additional tools to review the results. Statistics, histograms, and scatter plots can be used to help compare and analyze designs.

Click the *Integrity* tab to view a series of statistical measures on input variables and output responses.

|   | Label                           | Varname                | Category  | Variance  | Std. Dev. | Avg. Dev. | CoV.      | Skewness   | Kurtosis  | RMS       |
|---|---------------------------------|------------------------|-----------|-----------|-----------|-----------|-----------|------------|-----------|-----------|
| 1 | Leta-value-lin                  | var_1                  | Variable  | 0.0050876 | 0.0713274 | 0.0558252 | 0.0850524 | -1.4361751 | 1.7248959 | 0.8412254 |
| 2 |                                 | m_1_r_1                | Response  | 0.2132648 | 0.4618060 | 0.3601725 | 0.0809898 | -1.4554659 | 1.8136211 | 5.7180348 |
| 3 | Upjective 1                     | obj_1                  | Objective | 0.2132648 | 0.4618060 | 0.3601725 | 0.0809898 | -1.4554659 | 1.8136211 | 5.7180348 |
| 4 | 🙀 Objective Function            | Objective_Function_Val | Objective | 2.13e-04  | 0.0145924 | 0.0092497 | 1.9342907 | 2.4201855  | 6.0361371 | 0.0154735 |
| 5 | Response 1 ( Target )           | m_1_r_1_DTV            | Response  | 0.2132648 | 0.4618060 | 0.3601725 | 1.5498306 | -1.4554659 | 1.8136211 | 0.5211388 |
| 6 | Response 1 (Normalized Target ) | m_1_r_1_DTVN           | Response  | 0.0059240 | 0.0769677 | 0.0600288 | 1.5498306 | -1.4554659 | 1.8136211 | 0.0868565 |

Last modified: v2017.2 (12.1156684)

