
altairhyperworks.com

Altair MotionView 2019 Tutorials

MV-1070: Creating a Simple Pendulum System using MDL

MV-1070: Creating a Simple Pendulum System using MDL

In this tutorial, you will learn how to create a definition based entity (such as a system)

using MDL.

Using systems allows you to:

• Organize your model file modularly

• Reuse system definition files

• Easily debug and maintain your files

• Create a library of modeling components

• Perform certain operations on the entire system at once (for example; turning

systems on/off, making the whole system compliant/rigid, translation, etc.). An

operation, such as translation on a system, is automatically performed on all the

subsystems within that system.

The concept of system definition is analogous to the procedures/subroutines in a

programming language.

Analogy between programming and MDL approach

A procedure is a program that needs information from the main program. The

procedure can be called /instantiated any number of times. A procedure is a part of

main program, but can be maintained separately.

Similarly, a system definition is a model aggregate which needs information from the

main model. It can be called/instantiated any number of times. A system definition

is a part of the main model which can be maintained separately.

Use of system definition is two-step process:

1. Defining the system

2. Instantiation of the system definition in the model

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.1

Section 1: System Definitions

A system definition is a reusable system model that can be a part of any model as long

all the attachment requirements are satisfied.

A system definition is represented by a *DefineSystem() block. This block should end

with a *EndDefine() statement that indicates the end of a definition block. All entities

defined within this block are considered to be part of the system definition.

A typical system definition example is shown below:

*DefineSystem(def_sys, att_1, att_2…att_n)

In the system definition example above:

− def_sys is the variable name of the system definition and will be used while

instantiating this system.

− att_1, att_2, … att_n is a list of arguments that act as attachments to the

system.

A system definition can be created in two ways:

1. Using the text editor.

2. Created from graphical user interface. This requires minimal text editing. Refer

to tutorial MV-1030.

Note This tutorial covers Method 1, as it covers all the details of the system definition.

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.2

Section 2: System Attachments

The picture above shows a system definition of an SLA suspension. It is an incomplete

system which needs information about the attachment bodies and points to get

connected to.

Excluding the *Attachment() statement, other entities in a system definition are similar

to an MDL model file.

The general structure of a system definition is:

• A system receives information about entities external to the system via

attachments.

• Any MDL entity can be passed to a system as an attachment.

• The *Attachment() statement inside the system definition declares the

arguments in the *DefineSystem block as an attachment, along with assigning

what type of entity the attachment is going to be.

• The same variable name as the attachment should be referred within the

definition when defining an entity that depends on the external entity.

• Refer to the entries in bold in the example below. Reference line numbers are for

reference only and are not part of the MDL file.

o Line 2 - defines a system with a variable name sys_definition and has

one argument b_body_att as an attachment.

o Line 4 - declares b_body_att as an attachment with the entity type as

Body.

o Line 7 - creates a revolute joint between b_sys_body which is a body

defined within this system (not shown) and b_body_att which is a body

that is an attachment to this system.

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.3

Note An attachment entity need not serve as a physical attachment to entities

inside the system definition. It may be used to represent external variables

being passed into the system definition. For example, datasets may also

serve as attachments.

Section 3: Instantiating a System

• Instantiating a system means creating an instance of a system definition. A

system is instantiated using a *System() MDL statement, which has the following

syntax:

o *System(varname, “label”, def_varname, arg_1, arg_2, …, arg_n)

where,

▪ varname – variable name of the system instance.

▪ label – descriptive label for the system.

▪ def_varname – variable name of the system definition being

instantiated.

▪ arg_1, arg_2,… arg,_n – entity variable names that act as

attachment to the system. The number of arguments should

match the number of attachments listed and declared in the

system definition.

• A definition can be instantiated multiple times. For example, a single system

definition file for an SLA suspension can be used to create multiple SLA

suspension systems within one or more vehicle model files.

• The following example illustrates a system definition and its instantiation within

an MDL model file. Some of the terms in the example below are in bold to

highlight a few key relationships between a system definition and its instantiation.

Reference numbers are for the example only, and are not contained in an MDL

file.

o A system instance with variable name system1 is created in line 2, that

refers to the definition sys_definition. B_Ground (Ground Body) which

is passed as an argument for the attachment.

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.4

o The system definition is described within the *DefineSystem() and

*EndDefine() block between line 3 and line 7. Attachment b_att gets

resolved to B_Ground.

Reference

Numbers

System Instantiation with Definition

1
// Model : Body.mdl

*BeginMDL(base_model, "Base Model")

2

//Instantiate the system definition sys_definition

*System(system1, "First System", sys_definition,

B_Ground)

3
//Begin System Defintion Block

*DefineSystem(sys_definition, b_att)

4

//Declare a body attachment to the system

*Attachment(b_att, "Body Attachment", Body, "Add an

body external to this system")

5

//Entities within the system

*Point(p_sys, "Point in the system")

*Body(b_sys, "Body in the system")

6

//Define a joint with the body b_sys and the body

attachment b_att

*RevJoint(j_rev, "Revolute Joint", b_sys, b_att,

p_sys, VECTOR, V_Global_X)

7 *EndDefine() //End Definition Block

8 *EndMDL()

You can instantiate systems within your model in one of three ways:

1. Manually author the MDL file as shown in the example above.

2. Import a system from the System/Assembly panel in the MotionView MBD

Model window.

3. Use the Assembly Wizard in the MotionView MBD Model window.

The exercises that follow explain the first two methods; the third is covered in a separate

tutorial.

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.5

Exercise 1: Creating and Using System Definitions

The following exercise illustrates how system definition can be generated from the

original system MDL file. The later part of the exercise shows two different ways of

system instantiation.

The following MDL statements are used in this exercise:

*DefineSystem()

*System()

*SetSystem()

*Attachment()

Problem

In Steps 1 and step 2:

• Modify the pendulum model from tutorial MV-1060 to create a pendulum system

definition file called sys_pendu.mdl.

• Use this system definition to add another pendulum to the pendulum model from

the tutorial MV-1060 to obtain the double pendulum model shown in the figure

below.

• Save your base model file as doublependulum.mdl.

• Perform a dynamic simulation of the transient response and view the animation.

Schematic representation of the double pendulum

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.6

Properties table for the double pendulum

Step 1: Create a system definition.

The structure of a system definition is similar to an MDL model file. You can reuse the

pendulum model file you created in the previous exercise to generate a more generalized

system definition.

1. Copy the pendulum.mdl file, located in the mbd_modeling\mdl folder, to your

<working directory>.

Below is a sample MDL file for the pendulum model in tutorial MV-1060.

//Pendulum Model

//05/31/XX

*BeginMDL(pendulum, "Pendulum Model")

//Topology information

//declaration of entities

//Points

*Point(p_pendu_pivot, "Pivot Point")

*Point(p_pendu_cm, "Pendulum CM")

//Bodies

*Body(b_link, "Ball", p_pendu_cm)

//Graphics

*Graphic(gr_sphere, "pendulum sphere graphic", SPHERE, b_link,

p_pendu_cm, 1)

*Graphic(gr_link, "pendulum link graphic", CYLINDER, b_link,

p_pendu_pivot, POINT, p_pendu_cm, 0.5, CAPBOTH)

//Revolute Joint

*RevJoint(j_joint, "New Joint", B_Ground, b_link, p_pendu_pivot,

VECTOR, V_Global_X)

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.7

//Output

*Output(o_pendu, "Disp Output", DISP, BODY, b_link)

//End Topology

// Property Information

*SetPoint(p_pendu_pivot, 0, 5, 5)

*SetPoint(p_pendu_cm, 0, 10, 10)

*SetBody(b_link, 1, 1000, 1000, 1000, 0, 0, 0)

*EndMDL()

You can convert the above MDL file into a system definition by making small

changes to your MDL file. It is important to note that this conversion is not

applicable in all cases, and some of the conditions that need to be taken care are

described later in this tutorial.

2. Replace the *BeginMDL() and *EndMDL() statements with the *DefineSystem() and

*EndDefine() statements, respectively. Specify an appropriate variable name for

the system definition.

3. The pendulum system definition would need information about:

− Where to connect (attachment point or pivot point)

− What body to connect to (attachment body)

Let’s use att_point and att_body as the attachment entities.

4. Use these variables in the *DefineSystem () statement:

*DefineSystem (sys_def_pendulum, att_point, att_body)

Note As mentioned earlier, the attachment entity can be any MDL entity.

Therefore one needs to specify the entity type that the variable represents

(for example, att_point represents the POINT entity).

5. Use *Attachment statement to specify the entity type that each variable represents.

*Attachment (att_point, "Pivot Point", POINT, "Attachment point where

the pendulum definition gets attached")

*Attachment (att_body, "Attachment body" , BODY, " Any body to which the

pendulum definition gets attached")

Note In the original model variable p_pendu_pivot was representing the pivot

point. While converting the pendulum model to pendulum system definition,

this pivot point would be provided by the attachment point.

6. The point p_pendu_pivot is now passed as an attachment, therefore we do not need

to define the pivot point. Delete the statement *Point (p_pendu_pivot, "Pivot

Point").

7. Retain pendulum CM point as it is.

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.8

8. Retain the *Body() statement to create the pendulum body.

The *RevJoint() statement refers to the B_Ground and p_pendu_pivot. Replace

B_Ground with the att_body and p_pendu_pivot with att_point.

9. Retain the sphere *Graphic() statement.

The *Graphic() statement for the cylinder refers to the variable p_pendu_pivot.

Replace the variable p_pendu_pivot with att_point.

Note All of these variable replacements show that wherever applicable, the

attachment variables should replace the original variables.

10. Retain the *Output() statement. This allows you to obtain displacement outputs on

each pendulum body in your model.

11. Remove *setpoint(p_pendu_pivot, 0, 5, 5).

12. Parameterize the points in the system so that they are positioned with respect to

each other in a certain way. In this case, you can set the CM point to be 5 units

away from the attachment point in the y and z direction (att_point.y+5,

att_point.z+5).

13. The following file shows a sample system definition (system.mdl):

// system.mdl

// created on:

*DefineSystem(sys_def_pendulum, att_point, att_body)

//Topology Data

// Declaration of Entities

//Attachments

*Attachment (att_point, "Pivot Point", Point, "Attachment

point where the pendulum definition gets attached")

*Attachment (att_body, "Attachment body" , Body, " Any body

to which the pendulum definition gets attached")

//Points

*Point(p_pendu_cm, "Pendulum CM")

//Bodies

*Body(b_link, "Ball", p_pendu_cm)

//Joints

*RevJoint(j_joint, "New Joint", att_body, b_link, att_point,

VECTOR, V_Global_X)

//Output

*Output(o_pendu, "Disp Output", DISP, BODY, b_link)

//Graphics

*Graphic(gr_sphere, "pendulum sphere graphic", SPHERE,

b_link, p_pendu_cm, 1)

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.9

*Graphic(gr_link, "pendulum link graphic", CYLINDER, b_link,

att_point, POINT, p_pendu_cm, 0.5, CAPBOTH)

// Property Data

*SetPoint(p_pendu_cm, 0, att_point.y+5, att_point.z+5)

*SetBody(b_link, 1, 1000, 1000, 1000, 0, 0, 0)

*EndDefine()

14. Save the file as sys_pendu.mdl.

Step 2: Add a system definition by manually authoring your MDL

file.

In step 1, you created a reusable system definition. In this step, you will instantiate this

system definition in your model file. In the manual approach, you will write an MDL file

which includes the system definition and instantiates it several times.

1. Create a new empty file in a text editor.

2. Begin the model file with a *BeginMDL() statement.

3. Copy the content in the sys_pendu.mdl file from*DefineSystem() to *EndDefine()

after the *BeginMDL() statement.

4. Instantiate the first pendulum system using the *System() statement. Refer to the

MDL Language Reference online help for syntax. For example:

*System(system1, "First Pendulum System", sys_def_pendulum,

P_Global_Origin, B_Ground)

When you instantiate a system, remember:

• Reference the system definition used by the system by specifying its variable

name as the third argument in the *System() statement. The variable name of

the system definition should be the same as you specified in the corresponding

*DefineSystem() statement. In the above example, system1 uses the system

definition sys_def_pendulum.

• If the system definition contains attachments, resolve those attachments when

you instantiate the system. For example, sys_def_pendulum has an attachment,

att_body, to reference body_2 in the *RevJoint() statement. In system1, the

pendulum body, b_link, should be connected to the ground body, B_Ground.

Therefore, B_Ground is specified as the attachment body in the *System()

statement.

• It is recommended to add the *System() statement before *DefineSystem(),

although this not mandatory.

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.10

5. Repeat Step 4 with appropriate modifications, to create the second pendulum

system using the *System() statement again.

• Provide a different variable name, system2, for the system instance.

• Use Pendulum CM (p_pendu_cm) and the Pendulum Body (b_link) from the

first system as the attachment.

The exact statement that you should use is shown below:

*System(system2, "Second Pendulum System", sys_def_pendulum,

system1.p_pendu_cm, system1.b_link)

6. Close the MDL file with the *EndMDL() statement.

A sample MDL file is provided below:

*BeginMDL(model, "MODEL")

*System(system1, "First Pendulum System", sys_def_pendulum,

P_Global_Origin, B_Ground)

*System(system2, "Second Pendulum System", sys_def_pendulum,

system1.p_pendu_cm, system1.b_link)

*DefineSystem(sys_def_pendulum, att_point, att_body)

//Topology Data

// Declaration of Entities

//Attachments

*Attachment (att_point, "Pivot Point", Point, "Attachment point

where the pendulum definition gets attached")

*Attachment (att_body, "Attachment body" , Body, " Any body to which

the pendulum definition gets attached")

//Points

*Point(p_pendu_cm, "Pendulum CM")

//Bodies

*Body(b_link, "Pendulum Body", p_pendu_cm)

//Joints

*RevJoint(j_pivot, " Revolute Joint at Pivot Point ", b_link,

att_body, att_point, VECTOR, V_Global_X)

//Output

*Output(o_pendu, "Disp Output", DISP, BODY, b_link)

//Graphics

*Graphic(gr_sphere, "pendulum sphere graphic", SPHERE, b_link,

p_pendu_cm, 1)

*Graphic(gr_link, "pendulum link graphic", CYLINDER, b_link,

att_point, POINT, p_pendu_cm, 0.5, CAPBOTH)

// Property Data

*SetPoint(p_pendu_cm, 0, att_point.y+5, att_point.z+5)

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.11

*SetBody(b_link, 1, 1000, 1000, 1000, 0, 0, 0)

*EndDefine()

*EndMDL()

7. Save the model as doublependulum.mdl.

8. Open the MDL file in MotionView and review the model.

9. Take a close look at items listed in the Project Browser. You will now notice a

'hand' under the System icon for the First Pendulum System and the Second

Pendulum System. This indicates that both of these systems share a single

definition. This feature is called a Shared Definition.

10. When a System definition is shared among different instances, any modifications to

one of those instances can be made to reflect in all of the instances. This can be

achieved as follows:

− From the Tools menu, select Options.

The Options dialog is displayed.

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.12

− Click on the Build Model option (located near the bottom of the tree).

11. Under Legacy Support, uncheck the Create a separate definition when

modifying a shared instance option. This will ensure that when entities in a

shared instance are modified, the changes will be reflected across all of the

instances without creating a separate definition.

12. Click OK to close the dialog.

13. Run the MotionSolve simulation and post-process the results. From the Main tab of

the Run Panel , specify the End time as 1.0 and the Print interval as 0.01.

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.13

Exercise 2: Adding Systems from the Systems/Assembly
Panel

This exercise demonstrates how to instantiate a system from the MotionView graphical

user interface using the Systems/Assembly panel.

Problem

In this exercise:

• Use MotionView to add another pendulum link to your double pendulum model to

obtain the triple pendulum shown in the image below.

• Solve and view the animation.

The triple pendulum

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.14

Properties table for the triple pendulum

Step 1: Add the system definition from MotionView.

Adding system definitions to a model is similar to adding other entities except the

system definitions are loaded from a file.

1. Start MotionView and open the pendulum model file from Exercise 1 (the previous

exercise) in the MBD Model window.

2. From the Project Browser, click Model.

The Systems/Assembly panel is displayed.

3. Click the Import/Export tab.

4. Using the Select File: file browser , pick the system definition you just created,

sys_pendu.mdl.

5. Click Import.

The Specify entity details dialog is displayed.

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.15

6. Under Select a definition, select sys_def_pendulum.

7. Under Label, remove the default label and enter Third Pendulum System as the

new label.

8. Under Variable, remove the default variable and enter system3 as the new variable.

9. Click OK.

Step 2: Resolve attachments and update points.

1. Select the newly added system from the Project Browser.

The *Attachment() line added to the system definition now appears in the

Attachments tab for the system folder of the newly added system. Attach the third

link of the pendulum to the second link in the pendulum system.

2. From the Attachments tab, activate the collector for Attachment body to

select a body attachment.

The Select a Body dialog is displayed.

3. Expand the Bodies folder in the second pendulum system and pick the Pendulum

Body (which belongs to system2).

4. Click OK.

5. Next, activate the collector for Pivot Point to select a point attachment.

The Select a Point dialog is displayed

6. Expand the Points folder under the second pendulum system and select the

Pendulum CM point.

7. Click OK.

The third pendulum system should be visible in the graphics area.

8. Save the model as triplependulum.mdl for future use.

9. Run MotionSolve and view the results.

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.16

Important Note Regarding Definitions:

One important aspect of definitions is that they need to be independent, therefore

a *DefineXXX block should not contain another *DefineXXX block within them. For

example, the figure on the left (below) shows a *Define block inside another

*Define block. Such definitions are referred as nested definitions and may result

in MotionView giving errors while reading such definitions. The figure on the right

shows the correct way of placing definitions.

In Exercise 1, the method to author a system definition is described by modifying

an existing model MDL, in other words replacing *BeginMDL() and *EndMDL()

with *DefineSystem() and *EndDefine(). While this method can be employed

in many cases, care should be taken so that any existing definition block within

the *BeginMDL block should not end up being nested as described above. Such a

definition block must be moved out of the block so that the definition blocks are

independent with regard to each other.

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.17

