
altairhyperworks.com

Altair MotionView 2019 Tutorials

MV-1060: Introduction to MDL

MV-1060: Introduction to MDL

In this tutorial, you will learn how to:

• Create a model using the Model Definition Language (MDL).

• Run a dynamic simulation of this model for a time of 2 seconds and 500 steps.

• Plot the rotation of the pendulum about the global X-axis and view the animation.

MDL stands for Model Definition Language. A MotionView model is an object that holds

the information in the form of this language which is required to describe a mechanical

system. The complete information about the model is stored in the MDL format. MDL is

an ASCII programmable language.

Some benefits of MDL include:

• Opening and editing in any text editor

• Assisting with model debugging

• Using conditional statements "if" for custom modeling requirements

• Building modular and reusable models

• Parameterizing the models

• Use modeling entities which are not available through GUI (for example,

CommandSets)

Section 1: Entities in MDL

A modeling entity is saved to MDL in the form of MDL statements. All MDL statements

begin with an asterisk (*).

There are two types of entities:

• General Entities

• Definition Based Entities

General Entities

• Have one statement to define the entity. They may have one or more statements

to set their properties.

• Some examples include points, bodies, joints, etc.

• Each general entity has certain properties consistent with its type. For example,

a point has the properties x-coordinate, y-coordinate, z-coordinate, label, state,

and varname (variable name).

Definition Based Entities

• Are defined through a block statement, called definition, and its instance is

created in a model by an instantiation statement.

• The block generally begins with a *Define() statement and end with a

*EndDefine() statement.

• The entity (or block) is comprised of a series of other MDL entities or members.

• These entities are reusable. Once defined, the same entity-definition may be

instantiated several times within the same model or different model files.

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.1

Some of the commonly used user-defined entities are outlined in the table below:

Entity Description

System A system entity defines a collection of modeling entities. These

definitions may be used repeatedly within the same model or different

MDL model files. A model can be organized into different systems.

Examples of system entities include SLA suspension system, wiper

blade system, and power-train system. Systems can be hierarchical in

nature (for example, a system can be a child of another system).

Assembly An assembly is similar to a system entity, except that the definition

resides in a separate file than the model file.

Analysis An analysis is a collection of entities (bodies, joints, etc.) describing a

particular analysis task or event applied to a model. For example, a

static ride analysis is one of the analysis that can be applied to a model.

An analysis can only be instantiated under Model (the top level root

system). A system can be a child of an analysis, however the reverse

is not true.

Dataset A dataset is a collection of user-defined variables of type integer, real,

string, Boolean, or filename. These variables can be referred or

parameterized to other entity properties. Datasets are displayed in a

tabular form, thereby offering a single window to modify a model.

Generally, design variables are collectively defined in the form of a

dataset. A dataset can be instantiated within a system or an analysis.

Template A template is a utility that uses the Templex program in HyperWorks.

It can be used to create user-defined calculations and codes

embedded into the model. The output of such code can be written out

to solver deck or execute another program. Another use is to

implement solver statements and commands not supported by MDL

and to generate text reports.

Note The system, assembly, and analysis are together referred to as container entities

(or simply containers).

Section 2: Properties of Entities

• Each entity has variable, label, and other properties associated with it.

• Each entity should have a unique variable name.

• Following is the recommended convention for variable names which allows the

user to identify the modeling entity during debugging. You are not restricted to

this nomenclature, however you are encouraged to adopt it.

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.2

This list of entities and their properties is not comprehensive. For a complete list, refer

to the MDL Language Reference on-line help.

General Entities Naming

Convention

Properties

Point p_ x, y, z, label, state, varname

Body b_
mass, IXX, IYY, IZZ, IXY, IYZ, IXZ, cg,

cm, im, lprf, label, state, varname

RevJoint j_ b1, b2, i, j, id

Vector v_ x, y, z, label, state, varname

Marker m_ body, flt, x-axis, y-axis, z-axis, origin

ActionReactionForce frc_ b1, b2, fx, fy, fz, id, tx, ty, tz

General entities, their naming conventions, and properties

Definition Based Entities Naming Convention Properties

System sys_ Label, varname, state

Analysis ana_ Label, varname, state

Dataset ds_ Label, varname, state

Template tmplt_ Label, varname, state

User-defined entities, their naming conventions, and properties

To access entity properties; use the entity varname, followed by a dot separator,

followed by the property. Below are some examples:

Entity Varname Varname Represents

b_knuckle A body representing the knuckle in the mechanical system.

p_knuckle_cg A point representing the center of mass point for the knuckle body.

Entity Property Name Property Accessed

b_knuckle.cm The center of mass marker of the knuckle body, b_knuckle.

b_knuckle.cm.id
The ID of the center of mass marker of the knuckle body,

b_knuckle.

p_knuckle_cg.x The x coordinate of p_knuckle_cg.

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.3

Section 3: Global Variables

MotionView comes with Global Variables, by default, which are available for use

anywhere in the model. These variables are case sensitive.

The table below lists some commonly used keywords and what they represent:

Keyword Refers to

B_Ground Ground body

P_Global_Origin Global Origin

V_Global_X, V_Global_Y, V_Global_Z Vectors along the global XYZ axes

Global_Frame Global reference marker

MODEL
Reference to the top level system of the

model

Common keywords in MotionView

Section 4: MDL Statement Classification

Topology statements

These are statements that define an entity and establish topological relation between

one entity and the other. For example, *Body(b_body, “Body”, p_cg). In this example,

the *Body statement defines a body having its CG at point p_cg. Through this statement

the body (b_body) is topologically connected to point p_cg.

Property or Set Statements

These statements assign properties to the entities created by topological entities. For

example, *SetBody() is a property statement that assign mass and inertia properties to

a body defined using *Body(). Since most of the property statements begin with “*Set”,

they are generally referred as Set statements.

Definition and Data

Building upon the concept of a definition block, these terminologies are used specifically

with regard to container entities such as Systems, Assembly, and Analysis.

The block of statements when contained within a *Define() block are termed as a

Definition. The statements within the block may include:

1. Topology statements that define entities.

2. Set statements that assign properties. These Set statements within a definition

block are called "Default Sets", as they are considered as default values for the

entities in the definition.

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.4

Any statements or block that resides outside the context of *Define() block are termed

as Data. These include:

1. Set statements within a *BeginContext() block that relate to entities within a

system, assembly, or analysis definition.

2. Some of the *Begin statements, such as *BeginAssemblySelection and

*BeginAnalysis.

Section 5: MDL Model File Overview

• MDL model file is an ASCII file; it can be edited using any text editor.

• All statements in a model are contained within a *BeginMDL() - *EndMDL() block.

• The syntax of the MDL statement is an asterisk (*) followed by a valid statement

with its arguments defined.

• Statements without a leading asterisk (*) are considered comments. In this

tutorial, comment statements are preceded by // to improve readability. The

comments are not read in by the MotionView graphical user interface and are

removed if the model MDL is saved back or saved to a different file.

MDL accepts statements in any order, with a few exceptions.

To help you learn this language, the code in the tutorial examples will follow this

structure:

//comments about the MDL file

*BeginMDL(argument list)

//Topology section

*Point…

*Body…

*System(…)

// definitions sub-section

*DefineSystem(..)…

..

.*EndDefine()

//Property of entities directly in *BeginMDL()//Property section for

entities within Systems and analysis

*BeginContext()

..

..

*EndContext()

.

*EndMDL

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.5

Exercise: Build a Pendulum Model using MDL Statements

The figure below shows the schematic diagram of a pendulum. The pendulum is

connected to the ground through a revolute joint at the global origin. The pendulum falls

freely under gravity, which acts in the negative global-Z direction. Geometry and inertia

properties are shown in the figure. The center of mass of the pendulum is located at (0,

10, 10).

Schematic representation of the pendulum

The following MDL statements are used in this exercise:

• *BeginMdl()

• *EndMdl()

• *Point()

• *Body()

• *Graphic() - cylinder

• *Graphic() - sphere

• *RevJoint()

• *Output() - output on entities

• *SetPoint()

• *SetBody()

Step 1: Create an MDL model file.

1. In a text editor, create the following comment statements describing the purpose of

the MDL model file:

//Pendulum falling under gravity

//date

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.6

2. Create a *BeginMdl() - *EndMdl() block to signify the beginning and end of the

MDL model file. Create all other MDL model file statements between these block

statements:

The syntax for the *BeginMdl() statement is:

*BeginMdl(model_name, "model_label")

where

model_name The variable name of the model.

model_label The descriptive label of the model.

For this model, use:

*BeginMdl(pendulum, "Pendulum Model")

*EndMdl()

It is strongly recommended that you look for the syntax of the corresponding

statements by invoking the online Help and typing the statement in the Index. In

MDL statements, only the keywords are case sensitive.

Step 2: Create the entity declarations required for the problem.

1. Create a point where the pendulum pivot would be placed using a *Point()

statement. The syntax is:

*Point(point_name, "point_label", [point_num])

where:

point_name The variable name of the point.

point_labe

l
The descriptive label of the point.

point_num An optional integer argument assigned to the

point as its entity number.

For this problem, you will need point_name and point_label.

//Points

*Point(p_pendu_pivot, "Pivot Point")

2. Using the same *Point statement create another point which would be pendulum

center of mass:

*Point(p_pendu_cm, "Pendulum CM")

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.7

3. Use the *Body() statement to define the ball’s body. The syntax is:

*Body(body_name, "body_label", [cm_origin], [im_origin], [lprf_origin],

[body_num])

where:

body_name The variable name of the body.

body_label The descriptive label of the body appearing in the

graphical display of the body.

cm_origin An optional argument for the center of mass point of

the body.

im_origin An optional argument for the origin point of the inertia

marker of the body.

lprf_origin An optional argument for the origin point of the local

part reference frame of the body.

body_num An optional integer argument assigned to the body as

its entity number.

Square brackets,[], in the description of any statement syntax means that an

argument is optional.

This problem requires body_name, body_label, and cm_origin.

//Bodies

*Body(b_link, "Ball", p_pendu_cm)

4. Define the graphics for the body for visualization. To attach graphics to the body,

use the *Graphic() statement for spheres and cylinder to display the link and the

sphere.

Statement syntax for sphere graphics:

*Graphic(gr_name, "gr_label", SPHERE, body, origin, radius)

where:

gr_name The variable name of the graphic.

gr_labe

l
The descriptive label of the graphic.

SPHERE This argument indicates that the graphic is a

sphere.

body The body associated with the graphic.

origin The location of center point of the sphere.

radius The radius of the sphere.

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.8

For this exercise, use all of the arguments. The statement is:

//Graphics for sphere

*Graphic(gr_sphere, "pendulum sphere graphic", SPHERE, b_link,

p_pendu_cm, 1)

Statement syntax for cylinder graphics:

*Graphic(gr_name, "gr_label", CYLINDER, body, point_1, POINT|VECTOR,

orient_entity, radius, [CAPBOTH|CAPBEGIN|CAPEND])

where

gr_name The variable name of the graphic.

gr_label The descriptive label of the graphic.

CYLINDER This argument indicates that the graphic is a cylinder.

body The body associated with the graphic.

Point1 The location of one end of the cylinder.

POINT|VECTOR Keyword to indicate the type of entity used to orient the

cylinder. If POINT is used, the following argument should resolve

to a point, otherwise it should resolve to a vector.

orient_entity The variable name of the entity for orienting the cylinder.

radius

[CAPBOTH|

CAPBEGIN|

CAPEND]

The radius of the cylinder.

An optional argument that identifies if either or both cylinder

ends should be capped (closed).

For this exercise, use all of the arguments. The statement is:

//Graphics for cylinder

*Graphic(gr_link, "pendulum link graphic", CYLINDER, b_link

p_pendu_pivot, POINT, p_pendu_cm, 0.5, CAPBOTH)

5. Create a revolute joint at the pivot point. The syntax is:

*RevJoint(joint_name, "joint_label", body_1,body_2, origin,

POINT|VECTOR, point|vector, [ALLOW_COMPLIANCE])

where:

joint_name The variable name of the joint.

joint label The descriptive label of the revolute joint.

body 1 The first body constrained by the revolute joint.

body 2 The second body constrained by the revolute joint.

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.9

origin The locations of revolute joint.

POINT|VECTO

R
Keyword to suggest the method of orientation for the joint using a

point or vector.

point|vecto

r
A point or vector that defines the rotational axis of the revolute

joint.

[ALLOW

COMPLIANCE]
An optional argument that indicates the joint can be made

compliant (a joint that is compliant is treated like a bushing and

can be toggled between compliant and non-compliant).

For this problem, you will use the following statement:

//Revolute Joint

*RevJoint(j_joint, "New Joint", B_Ground, b_link, p_pendu_pivot, VECTOR,

V_Global_X)

6. Create an entity output statement. The syntax for *Output - output on entities

is:

*Output(out_name, "out_label", DISP|VEL|ACCL|FORCE, entity_type,

ent_name, [ref_marker], [I_MARKER|J_MARKER|BOTH_MARKERS])

where:

out_name The variable name of the output.

out_label The descriptive label of the output.

DISP|VEL|ACCL|FORCE An argument that indicates whether the output type is

displacement, velocity, acceleration, or force.

entity_type Keyword to indicate the type of entity on which the

output is being requested. Valid values are:

BODY|JOINT|BEAM|BUSHING|FORCE|SPRINGDAMPER

ent_name The entity on which output is requested.

ref_marker An optional argument for the reference marker in which

the output is requested.

I_MARKER|J_MARKER|

BOTH_MARKERS
Keyword to indicate the capture of output on the I

marker, J Marker or both markers. The default is both

markers.

In order to obtain the displacement versus time output of the falling ball, you will

use the *Output() statement as follows.

//Output

*Output(o_pendu, "Disp Output", DISP, BODY, b_link)

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.10

7. Set property values for the entities you created in your MDL model file. This is done

in the property data section of the MDL model file. For this problem, use the

*SetSystem(), *SetPoint(), and *SetBody() statements.

//Property data section

*SetPoint(p_pendu_pivot, 0, 5, 5)

*SetPoint(p_pendu_cm, 0, 10, 10)

*SetBody(b_link, 1, 1000, 1000, 1000, 0, 0, 0)

8. Save the model as pendulum.mdl.

Your MDL model file will look like the file below (it summarizes the key sections of

the MDL model file for this exercise):

//Pendulum Model

//05/31/XX

*BeginMDL(pendulum, "Pendulum Model")

//Topology information

//declaration of entities

//Points

*Point(p_pendu_pivot, "Pivot Point")

*Point(p_pendu_cm, "Pendulum CM")

//Bodies

*Body(b_link, "Ball", p_pendu_cm)

//Graphics

*Graphic(gr_sphere, "pendulum sphere graphic", SPHERE, b_link,

p_pendu_cm, 1)

*Graphic(gr_link, "pendulum link graphic", CYLINDER, b_link,

p_pendu_pivot, p_pendu_cm, 0.5, CAPBOTH)

//Revolute Joint

*RevJoint(j_joint, "New Joint", B_Ground, b_link, p_pendu_pivot, VECTOR,

V_Global_X)

//Output

*Output(o_pendu, "Disp Output", DISP, BODY, b_link)

//End Topology

// Property Information

*SetPoint(p_pendu_pivot, 0, 5, 5)

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.11

*SetPoint(p_pendu_cm, 0, 10, 10)

*SetBody(b_link, 1, 1000, 1000, 1000, 0, 0, 0)

*EndMDL()

Step 3: Load and run the MDL model file.

1. Launch MotionView .

2. Click the Open Model icon, , on the Standard toolbar.

OR

− From the File menu, select Open > Model.

4. From the Open Model dialog, locate and select the file pendulum.mdl.

5. Click Open.

6. Observe and review the model in the graphics area.

7. From the Standard View toolbar, click the YZ Rear Plane View button.

The model is seen as shown in the image below:

8. Use the Project Browser to view the model entities and verify their properties.

9. Go to the Tools menu and click on Check Model to check for any modeling errors.

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.12

10. Perform the following steps to run MotionSolve:

− Go to the Run panel and select Transient as the Simulation Type: option.

− Set the End time as 2 seconds.

− Click on the Simulation Settings button.

The Simulation Settings dialog is displayed.

− Click on the Transient tab and review the integrator parameters.

− Click Close to close the dialog.

− From the Main tab, use the Save and run current model file browser, and

enter pendulum for the xml.

− Click Run.

− Upon completion of the run, close the solver window and clear the message log.

Step 4: Animate and plot the results.

1. Click Animate.

2. The animation file pendulum.h3d will be loaded in the adjacent window. Click on

that window to activate it.

3. Click the Start/Pause Animation icon on the Animation toolbar to start the

animation, and click the Start/Pause Animation icon again to pause the

animation.

4. Right-click on the Fit Model/Fit All Frames icon icon on the Standard Views

toolbar to fit the visualization in all frames of the animation.

5. Click on the MotionView window to make it active.

6. From the Run panel, click Plot.

7. The plot window will be added, with the pendulum.abf loaded.

8. Select Y Type as Marker Displacement, Y Request as REQ/70000000 Disp

Output – (on Ball), and Y component as DZ.

9. Click Apply.

The plot for the displacement of the pendulum in the Z direction is shown.

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.13

10. Click the Start/Pause Animation icon, , to review the plot and animation

together. Click , to pause the animation.

Your session page should look similar to the image below:

11. Close the session using the File menu (File > Exit).

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.14

