7y

Altair
HyperWorks

Altair MotionView 2019 Tutorials

MV-1023: Using Python Subroutines in MotionView Model Building

altairhyperworks.com

Altair MotionView 2019 Tutorials p.1

MV-1023: Using Python Subroutines in MotionView Model
Building

The objective of this tutorial is to replace several entities in a MotionView model with
Python user subroutines. You will run a model initially, and then edit the file to
incorporate Python scripts in place of MotionView entities and compare the results from
each simulation.

In this tutorial, you will learn how:
e User subroutines are incorporated into MotionView
e User subroutines are useful in customizing models

e To create Python scripts that can be used to define these subroutines (and how
they are called by MotionView).

You must be familiar with the MotionView user interface and entities panel, as well as
have some experience defining and modifying entities. Some experience with the
Python programming language is necessary to fully understand the topics covered.

Exercise One - Introduction to User Subroutines

User subroutines are a useful tool to customize simulations and analyses. These
subroutines, or usersubs can be created using variety of programming languages like C,
Ruby, TCL, and Python. Subroutines created in programming languages like C, C++ and
FORTRAN etc. are compiled to create *.d11 files using the MS UserSub Build Tool
(located in the MotionView Tools menu). These dlls are then used by the solver. In
older versions of MotionView only compiled usersubs (*.d11) were supported. Starting
with MotionView version 11.0, usersubs are enabled to use Python and Matlab scripts.

In this tutorial, we will be using Python to create usersubs. User subroutines can make
use of external Python scripts in order to define complex simulations, which cannot be
created through the MotionView GUI. With a basic knowledge of the Python
programming language, a user can easily generate intricate experiments to simulate any
complex mechanism.

This tutorial will show you how to replace five MotionView entities with their
corresponding usersubs.

Copy the model file required for this exercise, engine baseline.mdl, along with all of
the H3D files located in the mbd modeling\motionsolve\python usersub folder to your
<working directory>.

7y Altair

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials

p.2

The single cylinder engine model

The model we are using is a single cylinder engine, and uses a curve, an output, a force,

Motion C

and a motion entity. The system also uses default damping.

The curve is read from a CSV file, and gives a force value based on the angular
displacement of the connecting rod.

The output returns the displacement magnitude of the piston.

The force entity uses the angle of the connecting rod and the curve to apply a
variable pressure force to the piston.

The motion entity applies an angular motion to the Crank_Grnd revolute joint.

The default damping of the system is 1, however it can be changed in the Bodies

panel.

The following is a list of the entities and usersubs we will be using in this tutorial, along

with a brief description of their usage:

Entity Usrsub Description
+ Curve SPLINE_READ |Reads the curve data file.
m Request REQSUB Outputs the requested values

Proprietary Information of Altair Engineering

Pa Y

tair

Altair MotionView 2019 Tutorials p.3

Entity Usrsub ‘ Description

— Force GFOSUB Applies a force on the system.
Ib Motion MOTSUB Applies a motion to the system.
G Damping DMPSUB Defines the damping of a flexbody.

Step 1: Running the model.

1. Click the Run panel icon, @ to access the Run panel.

2. Click on the folder icon located next to the Save and run current model option,
and browse to your <working directory>. Specify the name as
engine baseline.xml for the MotionSolve input XML file.

3. Check your model for errors, and then click the Run button to run your model.

This will give you result files to compare with your usrsub results.

Exercise Two - Adding User Subroutines
Notes on using XML syntax in Python

Python can use many MotionSolve functions and inputs when certain syntax rules are
followed. When using a MotionSolve function such as AKISPL or SYSFNC, the string “py ”
must be added to the beginning. For example, “py sysfnc (..” would be the correct
usage of sysrNC in Python. When defining a usersub function in Python, the name of the
function and the inputs must match those outlined in the MotionSolve online help pages
exactly. When accessing model data in python through a function such as sYSFNC, use
the exact property name in quotations as the “id” input. Model properties that are
passed into Python in the function definition can be accessed throughout the script, and
do not need additional defining to use. An example of these syntax rules being used is
shown below:

def REQSUB(id, time, par, npar, iflaqg):
[A, errflg] = py sysfnc(“"DX”, [par[0],par[l]])

return A

Step 1: Using SPLINE_READ to Replace the Curve Entity.

The first user-subroutine we will implement uses the sPLINE READ function to return the
curve from the included pressure curve.csv file. SPLINE READ is the usersub that
corresponds to the curve entity in MotionView. It uses data points in an external file to
create a curve, which can then be used by other entities.

Writing the Python script:

1. Open a new Python file, and define a function with the name SPLINE READ using
“def SPLINE READ():", giving the appropriate inputs and outputs. The inputs and
outputs used are: id, file name, and block name.

& | -
Proprietary Information of Altair Engineering) A ta I f

Altair MotionView 2019 Tutorials p.4

2. Import the Python CSV package by including import csv after the function
definition.

3. Open pressure curve.csv in the function, and read the file to your Python script as
a variable. This can be done with “variable = open(‘pressure curve.csv’,
rrr) ",

4. Change the format of this variable from csv by defining a new variable, and using
csv.reader () to read your variable file.

5. Define an empty list, "1L”, to store the pressure curve data values. Iterate through

the list using “for item in curv:”. Append each item as a separate list value with

14

“L.append (item)

6. Remove the headers from the csv file by redefining the list from the second value till
the end of the list. This can be done with “L. = ©n[1:]1".

7. Define a counter variable to be used later. Define two lists that are half the length of
“1.”, and set them equal to zero. To do this, use “x = 16*[0.0]" twice; once with
the x value and once with the y value.

8. Create a while loop dependent on your counter variable being less than the length of
your list, minus one.

A\Sy/4

9. In each iteration of the loop, define your x and y data values for the index “i” as a
floating value of each half of your “1.” data sets. This should look like “x[i] =
float (L[i][0])"and “y[i] = float(L[i][11)"”. Increase your counter variable
by 1.

10. Define a z variable with a floating value of 0.0, and close the csv file. Defining a z
variable is necessary, as the next function we will use requires an x, y, and z
variable.

11. Use the put spline MotionSolve function, and return the “id”, as well as the lists
containing the first and second column of values and the z variable. This should be
done with “errflg = py put spline(id,x,y, z)"” followed by “return errflg”.

12. Save this file to your working directory as nonlin spline.py.

Your nonlin spline.py Python script should resemble the following:

def SPLINE READ(id, file name, block name):

import csv

ifile= open('pressure curve.csv','r') ## opens data file as
readable variable

curv = csv.reader (ifile) ## reads csv data, stores as
useable var.

L =[] ## creates empty list

for item in curv:

L.append (item) ## separates file values into list

L = L[1:] ## removes block names from list

i=0 ## creates counter

/4 | :
Proprietary Information of Altair Engineering \ A ta I r

Altair MotionView 2019 Tutorials p.5

x = 16*[0.0]
y = 16*%[0.0] ## splits list into x and y lists
while i < (len(L)-1):
x[1] = float (L[1i][0]) ## changes values from str to float
yli] = float(L[i][1])
i+=1 ## counter increment
z = 0.0 ## defines z value
ifile.close() ## closes data file
errflg = py put spline(id,x,y,z) ## var to create MotionSolve
spline
return errflg ## returns var

Implementing the Python script:

1. In MotionView, go to the Curve panel PF, and locate the Force_Pressure curve in
the project directory tree to the left of the MotionView workspace.

2. From the Properties tab, check the box marked User-defined.
3. From the Attributes tab, make sure Linear extrapolation is checked.

4. Click on the User-Defined tab, and use the File name file browser to select the
pressure curve.csv file.

5. Change the Function Type in the drop-down menu from DLL to Python, and
ensure the function name is SPLINE_READ. You do not need to enter anything for
the Block name, as it is not needed in this tutorial.

6. Check the box marked Use local file and function name. Use the Local File file
browser (the folder button to the right) to locate and select the nonlin spline.py

file.
o0 o
Froperes File neurea: = [> Pviorking _deraciony by 023 /pressuns_cura civ Black name l—
Altriutes)
User-Dehned # Llga local Wi and funclon nami Local File = |l. Pvoekng deddion MV I 3 ndribe_splieg oy
Fumchon Type |I-’.-1H" ¥ | Funchicn rsme: |E-"-". INE_READ

The curve panel using the SPLINE READ usersub

Step 2: Using REQSUB to Request an Output.

The second user-subroutine will use Python to specify which values to return. In this
tutorial, the returned values will be the magnitude of displacement for the piston.

Writing the Python script:

1. Create another Python file, and define a function named rREQSUB with the appropriate
inputs and outputs. The syntax for this is “def REQSUB(id, time, par, npar,

7y Altair

iflag)".

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.6

2. Use the sysfnc utility to implement the “DM” (or displacement magnitude) function
on the first and second input parameters, and define a variable and an error flag by

”

writing * [D, errflg] = py sysfnc(“DM”, [par[0],par[1]])".

3. Return a list of eight values, where the second value is your variable, and the rest
are equal to 0. This will be your result variable, and should look like “result =

[0,0,0,0,0,0,0,01".
4. Save this file to your working directory as req nonlin.py.
Your req nonlin.py Python script should resemble the following:

def REQSUB(id, time, par, npar, iflaqg):

[D, errflg] = py sysfnc("DM", [par[0],par[1]]) ## sets "D" as piston
displacement mag

result = [(0,D,0,0,0,0,0,0] ## lists results for output
return

return result ## sends list with results to motionsolve as
output

Implementing the Python script:

1. In MotionView, go to the Outputs panel «, and locate the Output_Conrod_Length
output in the project directory tree to the left of the MotionView workspace.

The Outputs panel is displayed.

2. From the Properties tab, select User Defined from the first drop-down menu.

3. Click in the text field labeled Output, and then click on the ﬁ button to open the
Expression Builder.

4. In the text field of the Expression Builder, click inside the parentheses and add
Oy

7y Altair

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials

p.7

From the Expression Builder

, locate and select the j_0.i.idstring (located in the

Joints folder in the directory) and insert this id string into the expression by
positioning the cursor inside a set of braces and clicking the Add button. In
addition, add the j_1.i.idstring into the expression by repeating this same process.

[T Expression Builder (Dutput Convod_Length-uis_sub]

Exprasson
USER[{_Duidewring]. {1 vidstnngjy

Fort | Appty |

Properties | Meson | Farncs

Undo |

Genesal | Location

x|
o |

Close

™ Evadanted

I|_I] Lidstrieg
¥ Fillar entiigs witin valkd scope

= & The Model
2) Filsnamas Dats
5) Opsticn Diats
A | Paints
) Badws
) Markers
2 Vet
-) Data Sets
=3 Joints
= & BigEnd_Fe
T label
4 siete
40
T label
= stale
et e
#
num
T
node_id
¥ oemi_migth
omi_di)

|3t 04040

Add |

g * Rangs

] . %

in

L [T
r

-
=] L L L]

-l

Fibar.]

IFRF| Fin

Functioas

Hilert

Expression Builder dialog

Click OK to close the dialog.

Check the Use local file and function name box, and select Python from the

Function Type drop-down menu.

Use the Local File file browser to locate and select the req nonlin.py script, and

make sure that the Function name text field reads REQSUB.

@' | o_0 LAEA K

fia] Pr :

E ‘Lﬂl“ User Defined j .
E‘ Utser e i 4040, 301 04050)

W Use local file and function nanme

Function Type [Pg.ﬂhu:m

Outputs panel using REQSUB

Local File: £|C Working_directoryy 1023\ req_nonln oy
=| Function name: [REGSUB

Proprietary Information of Altair Engineering

7y Altair

Altair MotionView 2019 Tutorials

Step 3: Using GFOSUB to Replace the Force Entity.

The GFOSUB user subroutine replaces a force with a user defined Python script. The
GFOSUB used here will take the curve data defined with SPLINE READ, and change
depending on the Conrod angle according to the curve.

Writing the Python script:

1.

7.

Open a new Python file, and define the function GFOSUB by typing “def GFOSUB (id,
time, par, npar, dflag, iflag):”

Import "pi" from the Python “math” library using “from math import pi”.

Use the “az” function for angle in the z direction with the sysfnc command, to save
it as a variable. To do this, type “[a, errflg] =

py sysfnc(“Az”, [par[l],par[2]11)”.

The angle will be measured in radians by default, so change the variable defined in
the previous step to degrees. As the model extends from the origin into the
negative y direction, you will need to multiply by -1. The method used in this
tutorial is "B = ((-1)*A*180) /pi”.

Define another variable using the “akispl1” utility, which interpolates the force
values from the curve. You will need input arguments of your angle “B”, zero to
specify a two dimensional curve, and zero for the curve input and the order. This
line is written as “[C, errflg] = py akispl(B,0,par[0]1,0)".

Return a list three elements long, where the second element is the variable defined
with the Akima interpolation function. The data from interpolation is stored in the
first column, so use “return [0,C[0],01".

Save this file to your working directory as gfo nonlin.py.

Your gfo_nonlin.py Python script should resemble the following:

def GFOSUB(id, time, par, npar, dflag, iflag):

from math import pi

[A, errflg] = py sysfnc("AZ", [par[l],par([2]]) ## retreives conrod
angle

B = ((-1)*A*180)/pi ## converts radians
to degrees

[C, errflg] = py akispl(B,0,par([0],0) ## interpolates data to fit
curve
return [0,C[0],0] ## returns C data as force values

Implementing the Python script:

1.

Proprietary Information of Altair Engineering

In MotionView, go to the Forces panel -, and locate the Force_Gas_Pressure
force in the project directory tree to the left of the MotionView workspace.

p.8

7y Altair

Altair MotionView 2019 Tutorials

2. From the Connectivity tab, check the User-defined properties box.

fre 0 x|
Connactivity
Farca: Action ank = | Achon force on: Bod Fiston
User-Defined | cd J 4
F'rnpe-nies'|Tmn5Iu1iunnl j

W User-dafined propedies
™ Use explicit markers Apphyforce at: Point Fistan Chi

Local red. frame: BefMarker | Global Frame

p.9

Diata Surnmary. .

3. From the User-Defined tab, edit the Force value with the Expression Builder to
include the curve idstring, the ground marker idstring, and the crank marker

idstring.
.] Expressien Builder () E.
Exprassion Ok

USER{crv_0Lidstang], Im_DLidstrng]. {m_1 idstingl]

Fort | Apphy | Lrda | [Evaluatad

Properies | bicticn l Force l Genaral Location]

m_1.idsking [Nm Evaluated Add
R Filler @ntties within valid scope

=gl The Model -
= _J Filenamea Data
2] Option Data
=] Paoints
&] Bodies
= 4 Markers
A, Global Frame
' Mark_Crank
' Mark_Grnd
T label -
5 ciake
i dc
#id
num

B

-

omt_meth
omit_dir
omit_dir2

4. Click OK to close the dialog.

Closa |

5. Check the Use local file and function name box, and select Python from the

Function Type drop-down menu.

6. For Local File, select gfo nonlin.py from your working directory.

Proprietary Information of Altair Engineering

7y Altair

Altair MotionView 2019 Tutorials p.10

7. Make sure the Function name is set to GFOSUB.

K ki frc.0 X[
- Connectivity
UserDefined Llsar expr |L|EEH[3EI1W‘I. 30103070, 30101070)
B ¥ Use local file and funcion name Local File .," IC WWhineking_directornAMV102 3 alo_nonlingry
Function Type:| Python jFundlnn name-'[GFE'SLIEI

Step 4: Using MOTSUB to Define a Motion.
Writing the Python script:

1. Open a new python file, and define the MoTSUB function, including the required
inputs. The correct syntax for this is “def MOTSUB(id, time, par, npar, iord,
iflag):".

2. The MOTSUB user subroutine requires a function or expression, and its first and
second order derivatives. Create conditional statements using the function order
variable “iord” to define the function and its first and second derivatives with “if
iord==0:”, “elif iord==1:" and “else:”.

3. The function and its derivatives should be defined with the same variable name.
The function used in this tutorial is "2 = 10.0461*time”. This makes the first
derivative equal to “a = 10.0461”, and the second derivative equal to *a = 0.0".

4. Return the function variable with “return a”.
5. Save this file to your working directory as mot nonlin.py.

Your mot _nonlin.py Python script should resemble the following:

def MOTSUB(id, time, par, npar, iord, iflag):

if iord==0: ## function
A = 10.0461*time

elif iord==1: ## first derivative
A = 10.0461
else: ## second derivative
A= 0.0
return A ## returns function based on iord input

Implementing the Python script:

1. In the directory tree on the left side of the HyperWorks desktop, locate the
Motion_Crank motion and click on it.

The Motions panel is displayed.

/4 | :
Proprietary Information of Altair Engineering \ A ta I r

Altair MotionView 2019 Tutorials p.11

2. In the Motions panel, check the User-defined properties box.

mot_0 ||
Connectivity
User-Defined

Diefine motion:| On joint j Joint ICrank_Glnd Type: BevJoint

Fotational Motion J

¥ User-defined properties

3. Click on the User-Defined tab.

Because we defined the function in the Python script, we do not need to modify
USER() text field.

4. Check the box labeled Use local file and function name, select Python from the
Function Type drop-down menu.

5. Use the Local File file browser to locate and select the mot nonlin.py file.

K i mot_0 x|v|#
i Connechity
Liser expr |USER
User-Defined it I 0
7] F Use local file and funclion name Local File 7S Working_directony\ k102 3 mat_nonlin gy

Funchon Type:| Python j Funiction narﬁe.[HCITSUE

Motions panel using MOTSUB

Step 5: Using DMPSUB to Add Custom Flexbody Damping.
Writing the Python script:

1. Open a new Python file and define the pMPsuUB function with “def DMPSUB () :”,
giving it the following inputs: “id, time, par, npar, freg, nmode, h”.

2. Define a list the length of “*nmode” using “cratios = nmodex*[0.0]".
nmode is the number of modes in the flexbody.

3. Create an “if” statement to iterate along the list of modes in the flexbody. The
“xrange ()" function can be used here, resulting in “for I in xrange (nmode) :".

4. 1In each iteration of the loop, set each index in your variable equal to 1 by adding
“cratios[i] = 1.0”".

5. At the end of your script, return the list variable with “return cratios”.

7y Altair

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.12

6. Save your script as dmp _nonlin.py.

Your dmp_nonlin.py Python script should resemble the following:

def DMPSUB (id, time, par, npar, freq, nmode, h):

cratios = nmode*[0.0] ## makes preallocated list for markers

for i in xrange (nmode) :

cratios[i] = 1.0 ## sets marker damping to 1

return cratios ## returns damping values

Implementing the Python script:

1. In the directory tree on the left side of the HyperWorks desktop, locate the Conrod
body and click on it (this is a flexbody in the model).

2. From the Properties tab, click on the Modes... button (located in the lower right
corner of the panel) to display the Modes dialog.

Properties
W FlexBody (CWS Animation scale:l 1.0000
FEM Ineria Props L :I
EUd";.-"CUUrdS":,-"E Grﬂphlcfllg' p‘- conrod h3d Ll:":i
Initial Conditions rnariants..
H3D file: | conrod hi3d Modes...
Modes. ..

3. Use the drop-down menu to select the User Function Damping option.

{J Modes £ |
% | v | 2
All | None Defeult Damping -

Defauli Damping

Use | Index | Frequency | |CRatio Damping ping Ratio =]
r 1 N FA = er Function Dampin 0.010 J
r 5 npiz| [|Eato Expres siEn Eampinq 0010
[3| 0oz Default Damping 0.010
r 4 0013 Default Damping 0010
[5 0.013 Default Damping 0.010
[B 003 Default Damping 0.010]

Close

Because we defined the damping in our dmp nonlin.py script, we do not need to
change the USER() expression.

& | -
Proprietary Information of Altair Engineering) A ta I r

Altair MotionView 2019 Tutorials p.13

4. Go to the Run panel @

5. Change the End time to 5.0, and the Print interval to 0.01.

|2 ;:,.I
* Save and run current model
T Run MotionSohe file

™ Scripted simulation

Main
ilC:\,Wuming_dlrE ctonAMY1 023 engine

j ﬁnal;.r&i5:||-l:|m:~ J
50000 | Script [MotionSolve v
Frintinterval: | 0.0100

Simulation type:| Transient

End time:

6. Now, export the MotionSolve file using File > Export > Solver Deck.

Note Currently there is no GUI option available to specify the paMPSsUB file defining
flexbody damping, therefore the dmp nonlin.py must be manually added to the
MotionSolve file (*.xm1) by adding following statements to the flexbody

definition:
is user damp = "TRUE"
usrsub param string = "USER()"
interpreter = "Python"
script name = "dmp nonlin.py"
usrsub fnc name = "DMPSUB"

Your flexbody definition should look like below:
<Body Flexible

id = "30104"

lprf id = "30104002"

mass = "7.424574879203591E-02"

inertia xx = "1.471824534365642E+02"

inertia yy = "4.505004745855096E+00"

inertia zz = "1.501914135052064E+02"

inertia xy = "-5.546373592613223E-03"
inertia yz = "-1.984540442733755E-03"
inertia xz = "1.557626595859531E-03"

cm_x = "1.191728011928773E-03"

cm_y = "-2.225471002399553E+01"
cm_z "5.469513396916666E-05"

h3d file "conrod.h3d"

is user damp "TRUE"

usrsub_ param string "USER ()"

interpreter "Python"

script name

"dmp nonlin.py"

Proprietary Information of Altair Engineering

7y Altair

Altair MotionView 2019 Tutorials p.14

usrsub fnc name = "DMPSUB"
flexdata id = "30104"
animation scale = "1."

/>

Exercise Three - Running Your Simulation with Usersubs

Now that all the user subroutines have been implemented, run your model, and compare
your results to those from your initial test.

Step 1: Using the Run Solver Panel to Run Your Model.

1. Go to the Run panel ®, click on/activate the Run MotionSolve file radio button.
2. Now browse to the *.xm1l file saved in previous step.

x|-7| A

Main Seawve and run currant model

- i L s} 1
) ! O ICWorkina_directonAk®T 02 M engine_userxml
% Fun MotionSohe file d - £ SSETE e

Scnpt[MotionSohae -

3. Click the Run button.

Exercise Four - Comparing Your Results

Now that we have results for both the initial model and the model using user
subroutines, we will compare the data to ensure accuracy. We will do this using
HyperGraph and Hyperview to compare the outputs and deformations of the system.

Step 1: Using HyperGraph to Plot the Displacement Magnitudes.

Using the outputs from both simulations, we will compare the displacement magnitude of
the piston. A correct result from the usersub run will match the results from the initial
run.

1. Begin by opening a new window by clicking the Add Page button E]I-]

7y Altair

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials p.15

2. Switch the application from MotionView to HyperGraph 2D by selecting it from

-
the Client Selector drop-down menu e’ (located on the left-most end of the

Client Selector toolbar).

S QO v FHME:o[®

ﬁ Hypertesh

ﬁj Hyperyiew |
Wi HyperGraph 20

. and run current model -
@ HyperGraph 3D otionSaolve file JC'\'

G kA otiomn'yi e

(= Mediaview

AotiohSolve j

| Texdview
TahleView

3. In HyperGraph, click the Build Plots panel button &~ on the Curves toolbar.

4. In the Build Plots panel, locate your baseline results from your working directory
using the Data file file browser. Select the file baseline.abf, and click Open.

5. The x and y axes options are be shown below. The default x variable is Time. For
the y variable: select Marker Displacement for Y Type, leave the default for Y
Request, and select DM for Y Component.

6. Click the Apply button (located on the far right side of the panel).

7. For your usersub results, repeat steps 4 through 6, using REQSUB and RESULT(2)
for Y Type and Y Component respectively.

8. Click Apply.

REQT0000000 Owiput_Caonnod_Length- (on Crank) - DM

Comparison of output results from both model simulations

7y Altair

Proprietary Information of Altair Engineering

Altair MotionView 2019 Tutorials

Step 2: Using HyperView to Compare Flexbody Stresses.

Using HyperView, you can view the stresses and deformations on the flexbody. The
results between the two simulations should be the same.

10.

11.

12.

13.

14

Proprietary Information of Altair Engineering

Add a new window by clicking the Add Page button fl:]

Switch the application from HyperGraph 2D to HyperView using the Client Selector
drop-down menu.

Click the Load Results button “#! on the Standard toolbar.
Locate your baseline.h3d results file in your working directory, and click Open.

Click Apply.

Open the Entity Attributes panel (ﬁ, and click the Off button next to the Display
option. Make sure that the Auto apply mode check box is checked.

Entity | ampanants =| Sar by |Hr.|-=~ - W Aula apply mode IW Cuoler Halenal
ile:rmrn'.n:-: =] Diealan H oA | ﬁmj
- Orghan Flasbody/ 201 Al — | Mesh | appar Profarty
I Fretves e ﬂl ve dlnse Add
\Os Flstona | Finject Opagus: gl :I:b: .| Al Calar

In the model window, click on the piston head, and both crank components.

Only the flexbody component should be displayed.

Click the Contour panel button I]J located on the Results toolbar.
The Contour panel is displayed.

Set Result type to Deformation->Displacement (v), and click on the flexbody in
the model window.

Result ype | Selection Aweraging mehod “mhue filter Display. L=aend Pesult cispley controt
T e T = b s *| | Modw: [Hons = we [0 I ooy reraul ol eploer
e T| Fasohsed in I i 10 %] | Vak A | - =
| c Fars b i : *] LT Creais ProrSnls
Lasmrs - | |"~!'!-'5'-' Syztem | b igliar | 1

i | L] | Ersalops bais ke Crifeaae |

Click the Apply button (located in the lower middle portion of the panel).

ﬁ%‘if
Next, click on the Tracking Systems panel button % |ocated on the Results
toolbar.

From the Track drop-down menu, select Component, then click on the flexbody in
your model window.

Separate your model window into two halves using the Page Window Layout drop-
down menu (located on the Page Controls toolbar).

In the blank model window, repeat steps 3 through 12 for your usersub h3d file.

p.16

7y Altair

Altair MotionView 2019 Tutorials p.17

15. Click on the Start/Pause button o on the Animation toolbar to animate your
models.

Mo 0008
Pl sS04 1

Comparison of flexbody deformation in HyperView

& | -
Proprietary Information of Altair Engineering ‘ \ A ta I r

