

altairhyperworks.com

HM-4700: Using the PAM-CRASH 2G Interface in HyperMesh

For this tutorial it is recommended that you complete the introductory tutorial, <u>HM-1000</u>: <u>Getting Started with HyperMesh</u>.

This tutorial introduces the HyperMesh interface to PAM-CRASH 2G. The following exercises are included:

- Load a prepared HyperMesh file
- Select the PAM-CRASH 2G user profile
- Create control cards
- Assign element types
- Define materials
- Define HyperMesh groups: sliding interface
- Define a rigid wall
- Creating boundary conditions
- Create time histories
- Creating a function
- Creating a sensor card
- Exporting a PAM-CRASH 2G data deck from HyperMesh

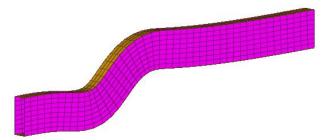
Model Files

This tutorial uses the rail-dyna.hm file, which can be found in <hm.zip>/interfaces/pamcrash/. Copy the file(s) from this directory to your working directory.

Exercise

Step 1: Select the PAM-CRASH 2G user profile

In order to use HyperMesh with a specific solver, the solver user profile must be loaded. Upon opening, you are prompted to select a user profile. In the **User Profiles** dialog, select the **Pamcrash2G2012** profile.


Selecting the PAM-CRASH 2G user profile sets the FE input reader to PAM-CRASH 2G and loads the PAM-CRASH 2G 2012 FE output template. It also loads the PAM-CRASH 2G **Utility** menu, which contains numerous tools specific to this interface. The graphical user interface is tailored to PAM-CRASH 2G users.

Step 2: Load a prepared HyperMesh file

A prepared model with elements and nodes is included in the <install_directory>\tutorials\hm\interfaces\pamcrash directory. The file name of the example is rail-dyna.hm. This is the basic example on which the tutorial is based.

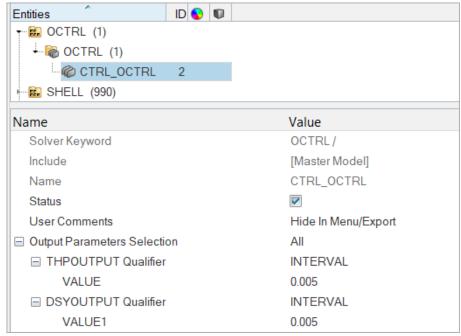
- Open a model file by clicking *File* > *Open* > *Model* from the menu bar, or clicking on the **Standard** toolbar.
- 2. In the **Open Model** dialog, open the rail-dyna.hm file.

Steps 3-6: Create Control Cards for PAM-CRASH 2G

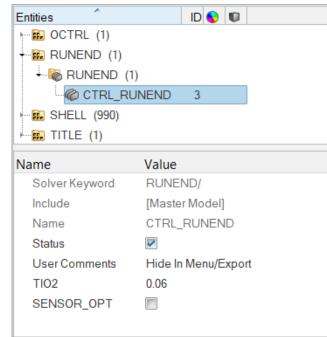
This section explains how to create control cards for the CONTROL SECTION of the PAM-CRASH 2G deck.

Note: The settings of the control cards influence the default values for defining materials. No PAM-CRASH 2G deck can be executed without error if control cards are undefined.

Step 3: Define the title card


- 1. In the **Solver** browser, right-click and select *Create* > *CONTROL CARDS* > *TITLE* from the context menu. A new control card opens in the **Entity Editor**.
- 2. In the TITLE field, enter This is my first PAM-CRASH example.

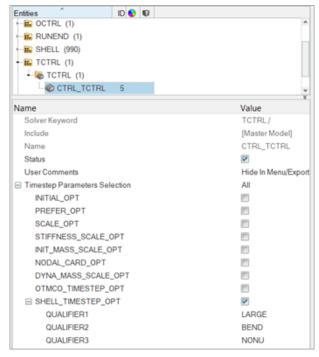
Entities	ID 📀 💵
🖬 🖬 SHELL (990)	
🖬 TITLE (1)	
TITLE (1)	
CTRL_TI	TLE 1
Name	Value
Solver Keyword	TITLE /
Include	[Master Model]
Name	CTRL_TITLE
Name Status	CTRL_TITLE
Status	



Step 4: Define the output control cards

- In the Solver browser, right-click and select *Create* > *CONTROL CARDS* > *OCTRL* from the context menu. A new control card opens in the Entity Editor.
 Note: The OCTRL control card defines output control parameters.
- 2. For THPOUTPUT, enter 0.005.
- 3. For **DSYOUTPUT**, enter 0.005.

- In the Solver browser, right-click and select *Create* > *CONTROL CARDS* > *RUNEND* from the context menu. A new control card opens in the Entity Editor.
 Note: The RUNEND control card defines end of run parameters.
- 5. For **TIO2**, enter 0.06.


Step 5: Define the file optional keyword

- 1. In the **Solver** browser, right-click and select **Create** > **CONTROL CARDS** > **FILE** from the context menu. A new control card opens in the **Entity Editor**.
- 2. For NAME, enter rail-dyna.hm.

ntities	ID 💊 💵
- 🖬 FILE (1)	
🕌 🗑 FILE (1)	
CTRL_FI	LE 4
🙃 OCTRL (1)	
- 🔝 RUNEND (1)	
ame	Value
Solver Keyword	FILENAME cannot have blank space
Include	[Master Model]
Name	CTRL_FILE
Status	
Status User Comments	™ Hide In Menu/Export

Step 6: Define the time step optional keyword

- 1. In the **Solver** browser, right-click and select **Create** > **CONTROL CARDS** > **TCTRL** from the context menu. A new control card opens in the **Entity Editor**.
- 2. Select the **SHELL_TIMESTEP_OPT** checkbox.
- 3. Set **QUALIFIER 1** to *LARGE* (default).
- 4. Set **QUALIFIER 2** to **BEND** (default).

Step 7: Assign Element Types for PAM-CRASH 2G

Depending on the analysis requirement, the HyperMesh basic element type can be changed.

For example, a quad4 can be a SHELL or a MEMBR element. The tria3 element can be a TRIA_C, SHELL, or MEMBR element. The tetra4, the penta6, and the hexa8 elements define the SOLID elements of PAM-CRASH. Properties can be added for the selected element type using control cards.

- 1. Open the **Element Type** panel by clicking **Mesh** > **Assign** > **Element Type** from the menu bar.
- 2. Go to the **2D & 3D** subpanel.
- 3. Click **quad4** = and select **SHELL**.
- 4. Click *elems* >> *all*.
- 5. Click *update*.
- 6. Click *return* to exit the panel.

Steps 8-10: Define material and /PART cards for PAM-CRASH 2G

Before proceeding with the tutorial you will rename the component tmp.

1. In the **Model** browser, **Component** folder, click *tmp* component. The **Entity Editor**

Entities	ID 💊	Include	
🛁 📸 Cards (5)			
🕂 🗟 Components (2)			
- 📁 🗭 side	1	0	
💴 💋 🖽 tmp	2 📘	0	
📖 🧊 Titles (1)			
Name	Value		
Name	tmp		
ID	2		
Color			
FE style	#		
Geometry style	\$		
Include	[Maste	er Model]	
Defined	V		
Card Image	<none< td=""><td>3></td><td></td></none<>	3>	
Property	<unsp< td=""><td>ecified></td><td></td></unsp<>	ecified>	
Material	<unsp< td=""><td>ecified></td><td></td></unsp<>	ecified>	

2. For Name, enter topbottom.

Step 9: Define a Material Type 102

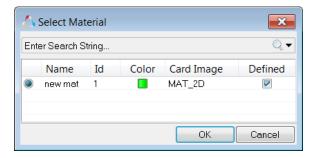
1. In the **Model** browser, right-click and select *Create* > *Material* from the context menu. A new material opens in the **Entity Editor**.

Entities	ID 😒	*
🕀 🏀 Card (5)		
🖻 🙀 Material (1)		Ξ
🛯 🎦 material1	1 🗖	-
		•
Name	Value	
Solver Keyword	MATER/	
Name	material1	
ID	1	
Color		
Include File	[Master Model]	
Defined Entity		
Card Image	MAT_2D	
User Comments	Hide In Menu/Export	
Material Type	Type 100	
S	+	
	100	

- 2. For Name, enter new mat.
- 3. Set *Card Image* to *MAT_2D*.
 - **Note**: The template provides MAT_1D, MAT_2D, and MAT_3D dictionaries. Material types from 200 to 230 are defined with MAT_1D. Materials types from 100 to 151 are defined with MAT_2D. Material types from 1 to 41 are defined with MAT_3D. To switch the material type, use the card previewer.
- 4. Set Material Type to Type 102.
- 5. For RHO, enter 7.85e-9.
- 6. For **E**, enter 20000.
- 7. For SIGMay, enter 250.
- 8. For NU, enter 0.3.

Step 10: Assign material and thickness to side and topbottom collectors

1. In the **Model** browser, **Component** folder, select *side* and *topbottom*. The **Entity Editor** opens and displays the selected component's common card data.


Entities	ID 😒 🤺
🕀 💫 Assembly H	ierarchy
🖃 🔕 Component	(2)
💋 🖪 side	1
🗾 🗗 topbo	ottom 2 🗖
🕀 📁 Title (1)	
🕀 🦳 Card (5)	
Name	Value
Color	2
Include File	[Master Model]
Card Image	<none></none>
Property	<unspecified></unspecified>
Material	<unspecified></unspecified>

- 2. Set Card Image to *Part_2D*.
- 3. For Material, click *Unspecified* >>*Material*.

Cara image	FAR1_20
Property	<unspecified></unspecified>
Material	Material 🔁 🛃
User Comments	Hide In Menu/Export
Ded Trans	CUEU

4. In the **Select Material** dialog, select *new mat* and then click *OK*. HyperMesh assigns the **new mat** material to the selected components.

5. For **h** (thickness), enter 2.5.

Steps 11-14: Define HyperMesh Groups: Sliding Interface for PAM-CRASH 2G

This section describes how to define a self contacting sliding interface. A second interface is defined only for tutorial purposes.

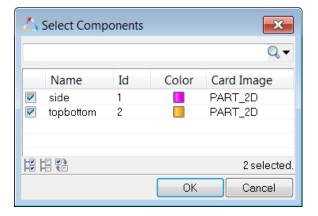
The procedure below explains how to define a type 36 self contacting sliding interface.

Step 11: Define the group

1. In the **Solver** browser, right-click and select **Create** > **CNTAC** > **CNTAC36** from the context menu. A new group opens in the **Entity Editor**.

Entities	ID 💊 📦	-
Ģ∽ 💼 CNTAC (1)		=
🗄 i 🤤 CNTAC36 (1)		
🛄 group1	1 🔳	
		`
Name	Value	
Solver Keyword	CNTAC/	
Name	group1	
ID	1	
Color		
Include File	[Master Model]	
Card Image	CNTAC36	
Slave entity IDs	0 Elements	
User Comments	Hide In Menu/Export	
Туре	36	
TITLE		
TIQI	0.0	

- 2. For Name, enter self_impact.
- 3. Select a new color for the group.
- 4. For SLFACM, enter 1.0.


Step 12: Add the slave components

In this step, the **Entity Editor** should still be open for the self_impact group.

- 1. Click *Slave entity IDs*.
- 2. Set the entity selector to *Components*.

merade i ne	[master model]
Card Image	CNTAC36
Slave entity IDs	Flements II
User Comments	H Components
Туре	3 Sets
TITLE	T Elements nterface
T1SL	

- 3. Click *Components*.
- 4. In the **Select Components** dialog, select *side* and *topbottom* and then click *OK*.

Step 13: Define an additional contact

This procedure explains how to define a type 34 master slave (element - node) contact.

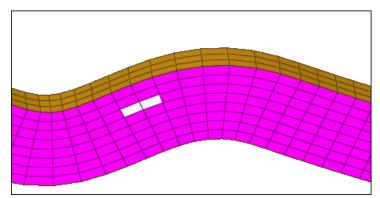
 In the Solver browser, right-click and select Create > CNTAC > CNTAC34 from the context menu. A new group opens in the Entity Editor.

Entities	ID 💊 📦	1
₽- 💼 CNTAC (2)		1
🖻 🙀 CNTAC34 (1)		
🛄 🤫 group1	2 🔟	
		*
Name	Value	-
Solver Keyword	CNTAC/	
Name	group1	
ID	2	
Color		
Include File	[Master Model]	
Card Image	CNTAC34	
Master entity IDs	0 Elements	
Slave entity IDs	0 Nodes	
User Comments	Hide In Menu/Export	

- 2. For Name, enter masterslave.
- 3. Select a new color for the group.
- 4. For **SLFACM**, enter 1.0.

Step 14: Add the master elements and slave nodes

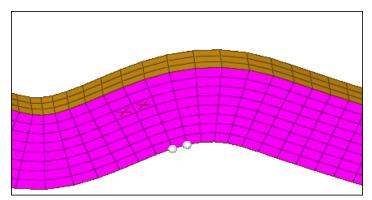
In this step, the **Entity Editor** should still be open for the masterslave group.


1. For Master entity IDs, click *0 Elements >> Elements*.

include i ne	[master model]	
Card Image	CNTAC34	
Master entity IDs	🗧 🔽 📕 🗾 🗧 Ele	ments 🔣 🔣
Slave entity IDs	0 Nodes	ч <u>с</u>
Lisen Commente	I field to be a source of the second state of	

2. In the panel area, set the switch to *elems*.

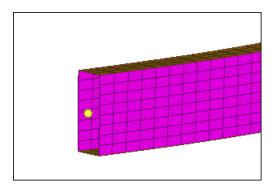
3. Using the **elems** selector, select two elements.



- 4. Click *add*.
- 5. Click *return*.
- 6. For Slave entity IDs, click **0** Nodes > Nodes.

Caru image	CIVIACJY
Master entity IDs	2 Elements
Slave entity IDs	Nodes N
User Comments	Hide In Menu/Export
T	24

- 7. In the panel area, set the switch to *nodes*.
- 8. Using the **nodes** selector, select two nodes.

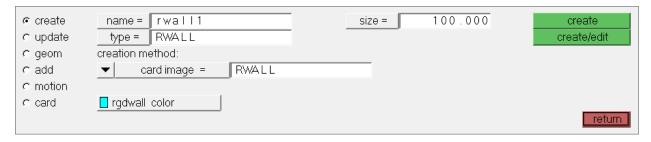

- 9. Click *add*.
- 10. Click *return*. The master elements are marked with and X, and the slave nodes displays.

Steps 15-19: Define a Rigid Wall for PAM-CRASH 2G

This section explains how to define a type 4 infinite rigid wall with a base node at -1.00, 0.0, 0.0.

Step 15: Create a base node for the rigid wall

- 1. From the menu bar, click *Geometry* > *Create* > *Nodes* > *XYZ*.
- 2. For **x**, enter -1.0.
- 3. For **y**, enter 0.0.
- 4. For **z**, enter 0.0.
- 5. Click *create*.



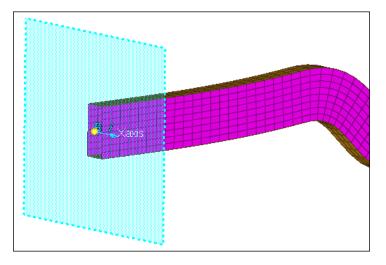
6. Click *return* to exit the panel.

Step 16: Create and define the rigid wall card

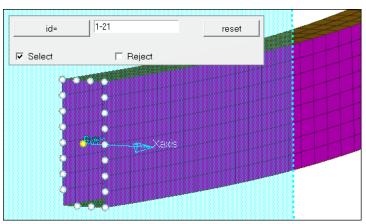
- 1. From the menu bar, click **BCs** > **Create** > **Rigid Walls**.
- 2. In the **Rigid Walls** panel, **Name** field, enter rwall1.
- 3. Click **type =** and select **RWALL**.
- 4. Click *rgdwall color* and select a color.
- 5. In the size =, enter 100.

Note: This specifies the display size of the rigid wall.

6. Click *create*.


Step 17: Define rigid wall geometry

- 1. Go to the **geom** subpanel.
- 2. Double-click name=, and select rwall1.
- 3. Set the switch after **shape** to *plane*.
- 4. Set the toggle after **shape** to *infinite*.
- 5. Under **normal vector**, set the switch to **vectors**.
- 6. Click the second switch and select *x-axis*.

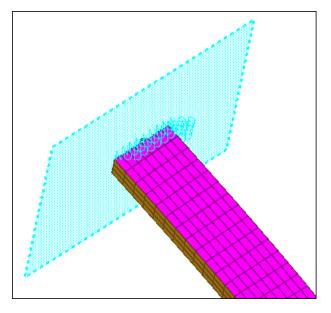

c create	name = rwall1	shape: ▼ plane	update
C update			
🕫 geom	base node edit		
C add	normal vector:		
C motion	▼ ▼ x-axis		review
C card			
			return

- 7. Using the **base node** selector, select the node you created in step 15.
- 8. Click *update*. The rigid wall displays.

Step 18: Add slave nodes for the rigid wall

- 1. Go to the **add** subpanel.
- 2. Set **slaves** to *nodes*.
- 3. Click *nodes* >> *by id*.
- 4. In the **id** field, enter 1-21 and then press **ENTER**.

Note: 21 nodes at the interface of the rail and the rigid wall highlight. One of the nodes was not selected.



5. Click the node that was not highlighted.

Or

Click *nodes* >> *id*, and enter 1012 in the *id* field.

6. Click *add*. The selected nodes are now set as slaves.

Step 19: Add motion to the rigid wall

- 1. Go to the **motion** subpanel.
- 2. Set the switch below **name** to **components**.
- 3. In the *x comp* field, enter 1.0.
- 4. Set type of motion to velocity.

o create	name = rwall1			update
🔿 update				
C geom			type of motion:	
⊂ add	▼ x comp =	1.000	▼ velocity	
• motion	y comp =	0.000		review
⊂ card	z comp =	0.000		
				return

- 5. Click *update*.
- 6. Click *return* to exit the panel.

Step 20: Define attributes in the card previewer

1. In the **Model** browser, **Group** folder, click *rwall1*. The **Entity Editor** opens and displays the group's card data.

Entities	ID 😒	
🖻 🤯 Group (3)		
📢 self_impact	1 🗖	
🔫 masterslave	2 📕	=
🛛 🤫 rwall1	3 🗖	
		,
Name		Value
Solver Keyword		RWALL/
Name		rwall1
ID		3
Color		
Include File		[Master Model]
Card Image		RWALL
SSID		22 Nodes
User Comments		Hide In Menu/Export
Geometry		
Geometry type		Infinite plane

- 2. Set Friction type flag to *No Sliding*.
- 3. Set Rigid Wall Descriptor Plane Type to Type 4.
 - **Note:** The parameters in the **Entity Editor** according to the definitions made. It is now possible to define the mass and the initial velocity for moving rigid wall with finite mass.
- 4. For **mRW**, enter 1.
- 5. For VINIT, enter 2000.

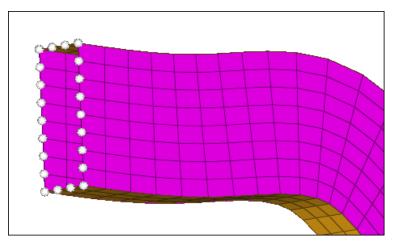
Steps 21-22: Create boundary conditions for PAM-CRASH 2G

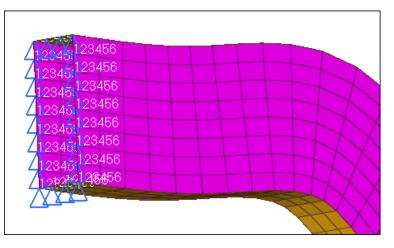
This section explains how to create model boundary conditions.

Step 21: Create a load collector

- 1. In the **Model** browser, right-click and select *Create* > *Load Collector* from the context menu. A new load collector opens in the **Entity Editor**.
 - **Note**: The new load collector becomes the current collector. Any new loads created will be placed in this collector.
- 2. For Name, enter boundary conditions.
- 3. Select a **Card image**.
- 4. Click the *Color* box, and select a color.

Step 22: Specify the constraints


1. Open the **Constraints** panel by clicking **BCs** > **Create** > **Constraints** from the menu bar.


2. Click *load types*, and select *BOUNC*.

Note: All constraints that are now created will be displacement boundary conditions.

- 3. Click *nodes* >> *by id*.
- 4. In the **id** field, enter 990–1011.
- 5. Press **ENTER**. 22 nodes highlight.

- 6. In the *size* field, enter 10.
- 7. Click *create*. Constraints are now added to the selected nodes.

8. Click *return* to exit the panel.

Steps 23-26: Create Time Histories for PAM-CRASH 2G

For PAM-CRASH 2G, time histories may be defined for nodes, elements, and local coordinate systems. For this exercise, you will only create time histories for some nodes and elements. The operation is the same for any type of time history that is created.

Step 23: Create a node time history card

- 1. In the **Model** browser, **Load Collector** folder, right-click on **Boundary Conditions** and select **Hide** from the context menu. The display of loads turns off.
- 2. From the menu bar, click **Setup** > **Create** > **Output Blocks**.
- 3. In the **name** field, enter node_thp.
- 4. Using the **nodes** select, select a few nodes.
- 5. Click *create*. The time history for nodes is created.

Step 24: Create an element time history card

- 1. In the **name** field, enter elem_thp.
- 2. Set the entity selector to *elems*.
- 3. Select a few elements.
- 4. Click *create*.

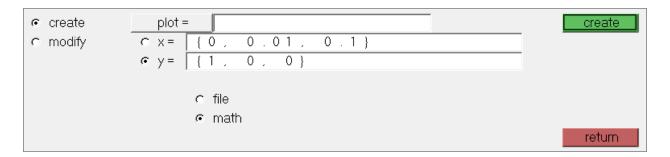
Step 25: Review time histories entities

- 1. Click *review*.
- 2. Select *elem_thp*. The entities associated with this time history highlight.
- 3. Click *return* to exit the panel.

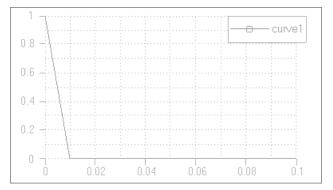
Step 26: View the time history card image

 In the Model browser, Right click on the *elem_thp output block* in the Model Browser and click *Card Edit*.

The time history card is displayed as it will look in the output.


2. Click *return* twice to exit the panel.

Step 27: Create a function


This section describes how to generate curves, which corresponds to the function cards /FUNCT in PAM-CRASH2G. This curve should serve as a function for a logical sensor switching on and off. At time=0, the sensor is on, at time=0.01 the sensor is switched off.

- 1. From the menu bar, click **XY Plots** > **Create** > **Curves** > **Single Curve**.
- 2. Select *math*.
- 3. In the \mathbf{x} = field, enter {0, 0.01, 0.1} (including the brackets).
- 4. In the **y** = field, enter {1, 0, 0} (including the brackets).

5. Click *create*. HyperMesh generates a curve.

6. Click *return*

Step 28: Create a sensor card

Sensors are implemented as properties in HyperMesh. In this example we refer to the curve defined in the preceding Help topic.

- 1. From the **Analysis** page, click *safety* >> *sensors*.
- 2. In the *name* = field, enter sensor.
- 3. Click *card image* =, and select **SENSOR**.
- 4. Click *create/edit*. The Card Image dialog opens.
- 5. Set **Sensor type** to **Type 5** (logical function switch Sensor).
- 6. Click *LCS* >> curve1.

Entities	ID	6	Include					
🛁 🐻 Cards (5)								
 Components (2) 								
- 📁 🎛 side	1		0					
🗐 🔀 topbottom		2 🔲	0					
🗝 🙀 Groups (3)								
 Materials (1) 								
material1	1		0					
 Ensors (1) 								
🛱 sensor	1		0					
Fitles (1)								
Name	Val							
Solver Keyword		SENSOR/						
Name		sensor						
ID		1						
Color								
Include		[Master Model]						
Card Image		SENSOR						
User Comments		Hide In Menu/Export						
Sensor type				Function Switch Sensor				
ITYP		5						
ISREV		0 : use default setting						
LCS	_		ecified>	g				

8. Click *return* twice to exit the panels.

Step 29: Exporting a PAM-CRASH 2G data deck from HyperMesh

This section explains how to generate a PAM-CRASH 2G input deck from HyperMesh.

- From the menu bar, click *File > Export > Solver Deck*. The Export Solver Deck tab opens.
- 2. In the File field, enter rail.pc.

Note: rail.pc is the PAM-CRASH2G file you will create.

- 3. Set **Template** to Pamcrash2G2012.
- 4. Click *Export*. HyperMesh writes the deck, and a message in the Status bar indicates the process is completed.

