

altairhyperworks.com

HM-4645: Seatbelt Routing

Before starting this tutorial it is recommended that you complete the introductory tutorial, <u>HM-1000: Getting Started with HyperMesh</u>.

Model Files

This tutorial uses the SEAT_MODEL.hm file, which can be found in <hm.zip>/interfaces/lsdyna/. Copy the file(s) from this directory to your working directory.

Seatbelt Routing

From the **Analysis** page, select the **Safety** panel and click **belt routing** to access the **Belt Routing** panel. Use the **Belt Routing** panel to create seatbelt segments that wrap around a dummy's torso or lap.

🕫 create name			belt width =	50.000	orient
C update			1d length at start =	25.000	accept
node list	gap =	5.000	1d length at end =	25.000	reject
wrap around:	element size =	8.000	on release		
Comps I	orient sensitivity =	3.000			
end type:	mesh type:		place 1D elems in		
♦ rigid links	🜲 🖽 quads only		place 2D elems in		return

Belt routing panel

Exercise

Step 1: Create a shoulder belt

- 1. From the menu bar, click *File* > *Open* > *Model*.
- 2. In the **Open Model** dialog, navigate to your working directory and open the file SEAT_MODEL.hm.
- 3. From the **Analysis** page, click *safety* > *belt routing*.
- 4. Go to the *create* subpanel.
- Using the node list selector, select *Slipring1*, *Orient_Torso*, and *Slipring2*, respectively. These nodes will be used as orientation nodes to guide a smooth profile belt.
 - Tip: To display the node attached to each tag, click 🖵 on the **Visualization** toolbar, click 🤗 in the **Visualization** tab, and then set **Tag icon** to **Text and Icon**.

- 6. Activate the **wrap around: comps** selector.
- 7. Click *comps*.
- 8. Click *comps* >> *by assems*.
- 9. Select the assembly, *Torso-Belt*.
- 10. Click *select*.
- 11. Click *return*.
- 12. Set the **2D/1D:1D** toggle to **2D/1D** (default) to create a combination of linear and plate belt elements.
- 13. For belt width, enter 50.0.
- 14. For 1d length at start, enter 50.0.
- 15. For 1d length at end, enter 50.0.
- 16. For element size, enter 8.0.
- 17. For gap, enter 5.0.
- 18. For orient sensitivity, enter 3.0.
- 19. Double-click *place 1D elements in*, then select a collector to place 1D elements.
 - **Note**: If nothing is selected, HyperMesh will create the collector **seatbelt1_1D**. By default, this collector is assigned the property *SECTION_SEATBELT and the material *MAT_SEATBELT (along with loading and unloading curves for forces vs. engineering strain).
- 20. Double-click *place 2D elements in*, then select a collector to place 2D elements.

Note: If nothing is selected, HyperMesh will create the collector **seatbelt1_2D**. By default, this collector is assigned the property *SECTION_SHELL with a thickness of 1.20mm and the material *MAT_FABRIC.

In create name se	atbelt1	belt width =	50.000	orient
C update		1d length at start =	50.000	accept
node list	gap = 5.000	1d length at end =	50.000	reject
wrap around:	element size = 8.000	on release		
▼ comps I	orient sensitivity = 3 . 0 0 0			
end type:	mesh type:	place 1D elems in	seatbelt1_	
🜲 rigid links	🜲 🖽 quads only	place 2D elems in	seatbelt1_	return

Belt routing panel settings

21. Create the belt by clicking **orient**. A preview of the full belt representation with multiple red and green line segments (two lateral lines at the ends of the belt, and additional lines along the length of the belt) displays.

22. Select each line segment and interactively control the profile and smoothness of the belt by rotating the lateral end segments, or moving and placing lines segments along the length of the belt. Once a final position is achieved, release the mouse to create a mesh that follows the specified path.

- 23. Once the belt is properly oriented, click *accept* to create seatbelt1.
 - **Note:** Transition between shell and liner elements for seatbelt1 by setting the **end type** toggle to rigid links or tria surfaces. Transition between quads and R-trias elements for the seatbelt mesh using the **mesh type** toggle.

Step 2: Create Belt Segments that Wrap Around the Lap

The steps for creating belt segments that wrap around the lap are similar to the steps for creating belt segments that wrap around the torso. When creating belt segments that wrap around the lap, you must select new end points and lap components.

Using the node list selector, select *Slipring3*, *Orient_Lap*, and *Slipring2*, respectively. These nodes will be used as orientation nodes to guide a smooth profile belt.

- 2. Activate the **wrap around: comps** selector.
- 3. Click **I** to clear any previously selected components.
- 4. Click *comps*.
- 5. Click *comps* >> *by assems*.
- 6. Select the assembly, *Lap-Belt*.
- 7. Click *select*.
- 8. Click *return*.
- 9. Create the belt by clicking **orient**. A preview of the full belt representation with multiple red and green line segments (two lateral lines at the ends of the belt, and additional lines along the length of the belt) displays.

10. Select each line segment and interactively control the profile and smoothness of the belt by rotating the lateral end segments, or moving and placing lines segments along the length of the belt. Once a final position is achieved, release the mouse to create a mesh that follows the specified path.

11. Once the belt is properly oriented, click *accept* to create seatbelt2.

Step 3: Modify the Seatbelt Using the Belt Routing Panel or the Entity Editor

Panel:

- 1. From the **belt routing** panel, go to the **update** subpanel.
- 2. Click *name*.
- 3. Select the seatbelt to be modified.
- 4. Modify the seatbelt's parameters accordingly.
- 5. Select each line segment to interactively orient them to a specific location. Once a final position is achieved, release the mouse to create a mesh that follows the specified path.
- 6. Once the belt is properly oriented, click *accept*.

C create name s e	atbelt1	belt width =	50.000	orient
🕫 update		1d length at start =	50.000	accept
node list	gap = 5.000	1d length at end =	50.000	reject
wrap around:	element size = 8.000	on release		
💌 comps 🔣	orient sensitivity = 3 . 0 0 0			
end type:	mesh type:	place 1D elems in	seatbelt1_	
🜲 rigid links	🜲 🖽 quads only	place 2D elems in	seatbelt1_	return

Entity Editor:

- 1. In the **Model** browser, **SeatBelt** folder, select the seatbelt to be modified. The **Entity Editor** opens, and displays the seatbelt's corresponding data.
- 2. Interactively modify the seatbelt and orient it to a new location by:
 - Clicking *Pick Nodes*, and using the **Nodes** selector to reselect nodes.
 - Clicking *Components*, and selecting a new component to wrap the seatbelt around.

3. Modify the seatbelt's parameters accordingly.

Entities	ID 💊
🖨 🚯 SeatBelt (2)	
🍾 seatbelt1	1
🍌 seatbelt2	2 🔲 .
	···· ··· ··· ··· ··· ··· ··· ··· ··· ·
Name	Value
Name	seatbelt I
Color	
Geometry Definition	
Pick Nodes	3 Nodes
Components	5 Components
Gap	5.0
1d Length at Start	50.0
1d Length at End	50.0
Vector at start	-7.1794951951672, -19.021737504239, -14.547451703388
Vector at end	-23.726058158489, -3.9530827584638e-008, -7.878715901719
Belt Width	50.0
Mesh Parameters	
End Type	RigidLinks
Mesh Type	Quads Only
Element Size	8.0
Place 1d elems in Collector	seatbelt1_1D (1020)
Place 2d elems in Collector	seatbelt1_2D (1021)
Contact	1 Groups

Entity Editor open for seatbelt1

- By default, the contact *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE is created for each seatbelt entity. The **seatbelt_2D** component is assigned as the slave, and the component selected for **wrap around** is assigned as the master.
- In the Solver browser, *CONTACT, *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE folder, right-click on seatbelt1_contact and select *Review* from the context menu to review the contact.

