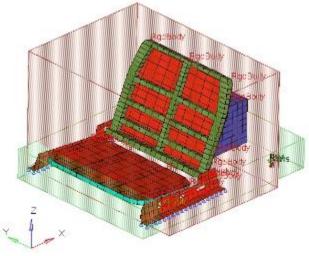


altairhyperworks.com

HM-4610: Using Curves, Beams, Rigid Bodies Joints, and Loads in DYNA

In this tutorial, you will learn how to:

- Create XY curves to define non-linear materials
- Define beam elements with HyperBeam
- Create constrained nodal rigid bodies
- Create joints
- Define *DEFORMABLE_TO_RIGID
- Define *LOAD_BODY
- Define *BOUNDARY_PRESCRIBED_MOTION_NODE
- Use the HyperMesh Component Table tool to review the model's data


Model Files

This tutorial uses the seat_start.hm and seat_2.hm files, which can be found in
<hm.zip>/interfaces/lsdyna/. Copy the file(s) from this directory to your working
directory.

Exercise 1: Define Model Data for the Seat Impact Analysis

This exercise will help you become familiar with defining LS-DYNA model data in HyperMesh.

In this exercise you will define and review model data for a LS-DYNA analysis of a vehicle seat impacting a rigid block. The seat and block model is shown in the image below.

Seat and block model

Step 1: Load the LS-DYNA user profile

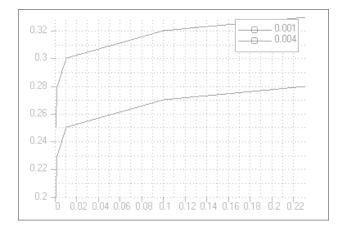
- 1. Start HyperMesh Desktop.
- 2. In the **User Profile** dialog, set the user profile to **LsDyna**.

Step 2: Retrieve the HyperMesh file

- Open a model file by clicking *File* > *Open* > *Model* from the menu bar, or clicking on the **Standard** toolbar.
- 2. In the **Open Model** dialog, open the seat_start.hm file. The model appears in the graphics area.
- 3. Observe the model using various visual options available in HyperMesh (rotation, zooming, etc.).

Step 3: Create an xy plot

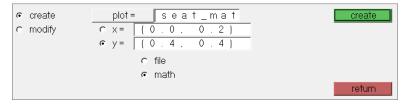
- 1. Open the **Plots** panel by clicking *XYPlots* > *Create* > *Plots* from the menu bar.
- 2. In the **plot=** field, enter seat_mat.
- 3. Set plot type to **standard**.

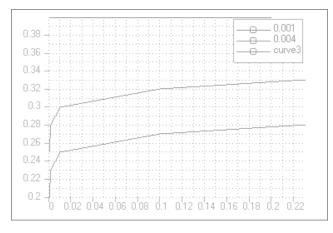

	like =	create plot
▼ standard		select curves
		roturn
		return

- 4. Leave the **like =** field empty. When an existing plot is selected, the new plot adopts its attributes.
- 5. Click *create plot*.
- 6. Click *return.*

Step 4: Input data from a file to create two stress-strain curves

- 1. Open the **Read Curves** panel by clicking *XYPlots* > *Create* > *Curves* > *Read Curves* from the menu bar.
- 2. Leave the **plot =** field set to **seat_mat**.
- 3. Click *browse*.
- 4. In the **Open** dialog, open the file seat_mat_data.txt.
- 5. Click *input*. HyperMesh creates two curves, and names them **0.001** and **0.004**.




6. Click *return*.

Step 5: Create a dummy xy curve to be used to create *DEFINE_TABLE

- 1. Open the **Edit Curves** panel by clicking *XYPlots* > *Edit* > *Curves* from the menu bar.
- 2. Go to the **create** subpanel.
- 3. Click **plot =**, and select **seat_mat**.
- 4. Select math.
- 5. In the x = field, enter {0.0, 0.2}.
- 6. In the y = field, enter {0.4, 0.4}.

7. Click *create*. HyperMesh creates a curve in the **seat_mat** plot, and names it **curve3**.

8. Click *return*.

Step 6: Create *DEFINE_TABLE from the dummy curve

1. In the **Model** browser, **Curve** folder, click *curve3*. The **Entity Editor** opens, and displays the curve's corresponding data.

Entities	ID 📀	*
🚽 🚽 curve2	4 🔲	Ξ
🖌 curve3	5 🔲	-
÷ 💁 o 🕐		-
Name	Value	
Solver Keyword	*DEFINE_CURVE	
Title	curve3	
ID	5	
Color		
Include File	[Master Model]	
DEFINE_TABLE		
Option	None	
Title		
SIDR		
SFA		
SFO		
OFFA		
OFFO		
DATTYP		

- 2. Select the **DEFINE_TABLE** checkbox.
- 3. For *ArrayCount*, enter 2.

Note: This is the number of strain rate values to be specified.

- 4. In the **Data: VALUE** row, click **Sec.**
- 5. In the ArrayCount dialog, enter 0.001 in the strain rate VALUE(1) field and 0.004 in the strain rate VALUE(2) field.

💪 ArrayCount	
VALUE	CurveId
1 0.001	<unspecified></unspecified>
2 0.004	<unspecified></unspecified>
	Close

6. In the *CurveId(1)* field, click *Unspecified* >> *Curve*.

VALUE	CurveId
1 0.001	Curve N
2 0.004	<unspecified></unspecified>

7. In the **Select Curve** dialog, select *curve1* and then click *OK*.

4	Select Curve		×
Ent	er Search String	Q, •	
	Name	Id	Color
	acceleration curve	1	
	gravity curve	2	
	curve1	3	
	curve2	4	
		ОК	Cancel

- 8. In the *CurveId(2)* field, click *Unspecified* >> *Curve*.
- 9. In the **Select Curve** dialog, select *curve2* and then click *OK*.
- 10. Click Close.

	×
CurveId	
curve1 (3)	
curve2 (4)	
	Close
	curve1 (3)

Step 7: Create the non-linear material (*MAT_PIECEWISE_LINEAR_PLASTICITY)

- 1. Open the **Solver** browser by clicking **View** > **Browsers** > **HyperMesh** > **Solver** from the menu bar.
- In the Solver browser, right-click and select Create > *MAT > MAT (1-50) > 24-*MAT_PIECEWISE_LINEAR_PLASTICITY from the context menu. HyperMesh creates and opens a new material in the Entity Editor.

Entities	^				
	JC7)				
🖨 🔝 *MAT (3)					
🖶 🙀 3-*MAT_PLASTIC_KINEMATIC (1)					
🐵 🙀 20 - *MAT_F	RIGID (1)				
🖻 🙀 24-*MAT_F	PIECEWISE_LINEAR_PLASTICITY (
🛄 😰 material	1				
📩 💼 *РАРТ (6)	·				
•	Þ				
Name	Value				
Solver Keyword	*MAT_PIECEWISE_LINEAR_PLAS				
Name	material1				
ID	3				
Color					
Include File	[Master Model]				
Defined Entity					
Card Image	MATL24				
User Comments	Hide In Menu/Export				
Tuno	Degulor				

- 3. For Name, enter steel.
- 4. For **Rho** (Mass density), enter 7.8 E-6.
- 5. For **E** (Young modulus), enter 200.
- 6. For NU (Poisson ratio), enter 0.3.
- 7. For **SIGY** (Yield stress), enter 0.25.
- 8. Click *LCSS*, and then click *curve*.

IDEE		
С		
Р		
LCSS	Curve N	M 📩
LCSR	\s	
VP		
ArrouCount		

9. In the **Select Curve** dialog, select *curve3* and then click *OK*.

Select Curve		X Q, -
Name	Id	Color
acceleration curve	1	
gravity curve	2	
curve1	3	
curve2	4	
curve3	5	
	ОК	Cancel

Step 8: Update the base_frame and back_frame components with the new non-linear material

- 1. From the menu bar, click *Tools* > *Component Table*.
- In the Components and Properties dialog, click Table > Editable from the menu bar.

🛆 Components and Properties (8) - displayed								
Table Selection Display Action User								
Refresh	e	Partid	Material name	Material id				
Editable 📐	Э	1	mat elaspl	1				
Filter	ie	2	mat elaspl	1				
Configure 🕨	е	3	mat elaspl	1				
Save 🕨		4	mat elaspl	1				
Quit		5	rigid mat	2				
Guit	J	6						
1 ioint		7						

- 3. Select the component, **base_frame**.
- 4. Set Assign Values to *Material name*.
- 5. Set **HM-Mats** to *steel*.
- 6. Click *Set*. HyperMesh assigns the material **steel** to the component **base_frame**.
- 7. In the **Confirm** dialog, click **Yes**.
- 8. Assign the material **steel** to the component, **back_frame**.

\sim	'is	Part name	Partid	Mate	rial name	Material id	Material type	Thic
	-1	cido_framo	1	mat ola	spl	1	MATL3	
	1	base_frame	2	steel		3	MATL24	
	1	back_frame	3	steel		3	MATL24	
	Ц	cover	4	mat ele	spl	1	MATL3	
	1	rigid block	5	rigid m	at	2	MATL20	
	1	welding	a					

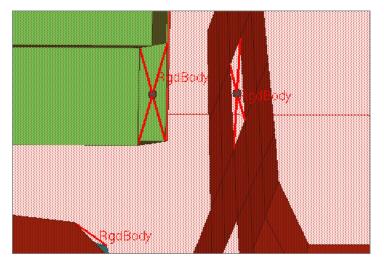
9. From the menu bar, click *Table* > *Quit*.

Steps 9-11: Create a beam element, *ELEMENT_BEAM, to complete the seat's back_frame connection to the side_frame on the left side

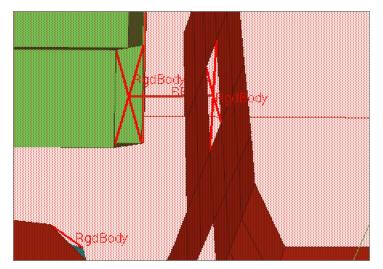
Step 9: Restore a pre-defined view

1. In the **Model** browser, **View** folder, right-click on **Beam_view** and select **Show** from the context menu.

Step 10: Set the current component to beams


 In the Model browser, Component folder, right-click on beams and select Make Current from the context menu. HyperMesh sets the beam component as the current collector.

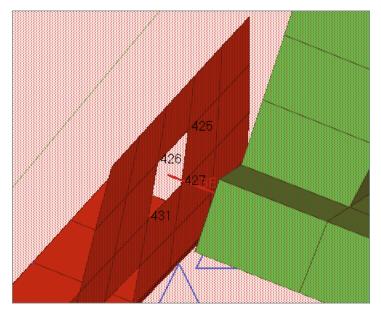
Step 11: Create the beam


- 1. Opens the **Bars** panel by clicking *Mesh* > *Create* > *1D Elements* > *Bars* from the menu bar.
- 2. Under **orientation**, click the switch and select *node*.

Note: You will select a direction node later to define the beam's section orientation.

- 3. Using the **node A** selector, select the center node of the left nodal rigid body.
- 4. Using the **node B** selector, select the center node of the right nodal rigid body.

5. Using the **direction node** selector, select any non-center node on one of the nodal rigid bodies. HyperMesh creates the beam.



6. Click *return*.

Step 12: Display node IDs for ease of following the next steps

- 1. Open the **Numbers** panel by clicking 123 on the **Display** toolbar.
- 2. Set the entity selector to *nodes*.
- 3. Click *nodes* >> *by id*.
- 4. In the id= field, enter 425-427, 431.
- 5. Press **ENTER**.
- 6. Select the *display* checkbox.
- 7. Click **on**. HyperMesh displays the IDs.

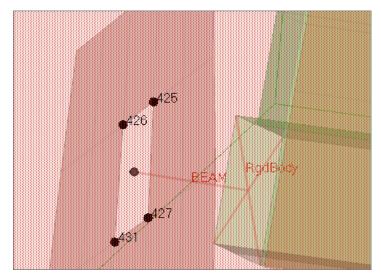
8. Click *return.*

Step 13: Set the current component to welding

 In the Model browser, Component folder, right-click on welding and select Make Current from the context menu. HyperMesh sets the welding component as the current collector.

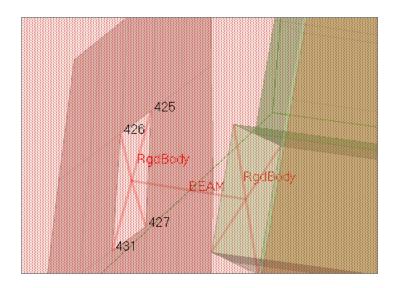
Step 14: Select the RgdBody type for the HyperMesh rigid configuration

- Open the Element Type panel by clicking Mesh > Assign > Element Type from the menu bar.
- 2. Select the elements to update.
- 3. Click *rigid* =, and then select *RgdBody*.



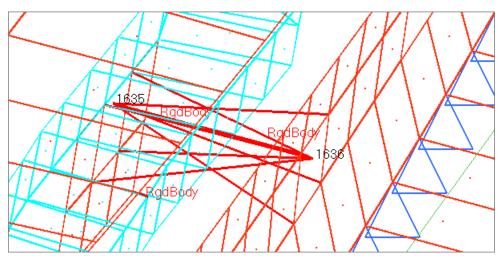
ເ⊂ 1D 📃	mass =	MASS	📃 beam = Elem Beam	update
🔿 2D & 3D 📕	plot =	Plotel	belt = SEATBELT	review
	weld =	SPOTWELD		elems I4
	rigid =	RgdBody		
	rbe3 =	Conlntp		default colors
	spring =	DISCRETE		
				return

- 4. Click *update*.
- 5. Click *return.*


Step 15: Create the nodal rigid body (*CONSTRAINED_NODAL_RIGID_BODY)

- In the Solver browser, right-click and select Create > *CONSTRAINED > *CONSTRAINED_NODAL_RIGID_BODY > *CONSTRAINED_NODAL_RIGID_BODY from the context menu.
- 2. In the **Rigids** panel, set the **nodes 2-n** selector to *multiple nodes*.
- 3. Using the **node1** selector, select the beam's free end.
- 4. Click nodes 2-n: nodes >> by id.
- 5. In the id= field, enter 425, 426, 427, 431.
- 6. Press **ENTER**.

- 7. Clear the **attach nodes as set** checkbox selected.
- 8. Click *create*. HyperMesh creates the nodal rigid body.



9. Click *return.* HyperMesh does not create *CONSTRAINED_JOINT_STIFFNESS; it is not needed for this joint to work.

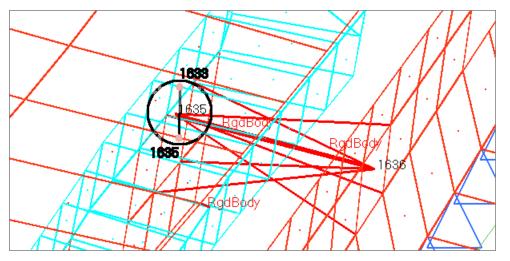
Step 16: Display node IDs for ease of following the next steps

- 1. On the **Visualization** toolbar, click 9 to display the model's elements as wireframe elements skin only.
- 2. Opens the *Numbers* panel.
- 3. Set the entity selector *nodes*.
- 4. Click *nodes* >> *by id*.
- 5. In the **id**= field, enter 1635, 1636.
- 6. Press **ENTER**.
- 7. Select the *display* checkbox.
- 8. Click **on**. HyperMesh displays the IDs.

9. Click return.

Step 17: Activate coincident picking

- 1. Open the **Graphics** panel by clicking *Preferences* > *Graphics* from the menu bar.
- 2. Select the *coincident picking* checkbox.
- 3. Click *return*.


Step 18: Set the current component to joint

 In the Model browser, Component folder, right-click on joint and select Make Current from the context menu. HyperMesh sets the joint component as the current collector.

Step 19: Create a revolute joint between two nodal rigid bodies (*CONSTRAINED_JOINT_REVOLUTE)

Rigid bodies must share a common edge along which to define a joint. This edge, however, must not have nodes merged together. Two rigid bodies will rotate relative to each other along the axis defined by the common edge.

- In the Solver browser, right-click and select Create > *CONSTRAINED > *CONSTRAINED_JOINT_REVOLUTE > *CONSTRAINED_JOINT_REVOLUTE from the context menu.
- 2. In the **Joints** panel, set **joint type** to *revolute*.
- 3. Using the **node 1** selector, click node **1635**. The coincident picking mechanism displays two nodes: **1635** and **1633**.

- 4. From the coincident picking mechanism, click node **1635**. Hypermesh selects node 1635 for node 1 in rigid body A.
- 5. Using the **node 2** selector, click node **1635**. The coincident picking mechanism displays two nodes: **1635** and **1633**.

- 6. From the coincident picking mechanism, click node **1633**. HyperMesh selects node 1633 for node 2 in rigid body B.
- 7. Using the **node 3** selector, click node **1636**. The coincident picking mechanism displays two nodes: **1636** and **1634**.
- 8. From the coincident picking mechanism, click node **1636**. HyperMesh selects node 1636 for node 3 in rigid body A.
- 9. Using the **node 4** selector, select node **1634** for node 4 in rigid body B.
- 10. Click *create*. HyperMesh creates the joint.
- 11. Click return.

Steps 20-22: Define *DEFORMABLE_TO_RIGID to set up the moving seat as rigid until the time of impact with the block, to reduce computation time

Step 20: Create an entity set that contains the components base_frame, back_frame, and cover

 In the Solver browser, right-click and select Create > *SET > *SET_PART > *SET_PART_LIST from the context menu. HyperMesh creates and opens a new set in the Entity Editor.

Entities	*	ID 😵 📦	*
🖨 💼 🛛 *SET (34)			
😟 📴 *SET_NOD	DE_LIST (33)		
🖃 📴 *SET_PAF	RT_LIST (1)		Ξ
set1		34	
			Ξ.
Name	Value		
Solver Keyword	*SET_PART_LIST		
Name	set1		
ID	34		
Include File	[Master Model]		
Card Image	Part		
Set type	non-ordered		
Entity IDs	0 Components		
Options	None		
Title			
DA1			
DA2			
DA3			
DA4			
SOLVER	MECH		

- 2. For Name, enter set_part_seat.
- 3. For Entity IDs, click *O Components* >> *Components*.

caro mage	i an	
Set type	non-ordered	
Entity IDs	Compo	onents 💦 📑 🔣
Options	None	13
Title		

4. In the **Select Components** dialog, select **base_frame**, **back_frame**, and **cover** and then click **OK**.

	Select Compo			Q -
	Name	Id	Color	Card Image
	side_frame	1		Part
V	base_frame	2		Part
V	back_frame	3		Part
V	cover	4		Part
	rigid block	5		Part
	beams	8		Part
				3 selected
			ОК	Cancel

Step 21: Define *DEFORMABLE_TO_RIGID to switch the deformable seat to rigid at the beginning of the analysis

 In the Solver browser, right-click and select Create > *DEFORMABLE_TO_RIGID > *DEFORMABLE_TO_RIGID from the context menu. HyperMesh creates and opens a new load collector in the Entity Editor.

Entities	^ ID 😵 📦	*
🖨 💼 *DEFORMABLE_TO_RIGID (1)		
🖮 🛺 🛛 NEFORMAE	LE_TO_RIGID (1)	=
🦾 🛓 loadcol	1 2 🔲	
ELEMENT (0)		*
Name	Value	
Solver Keyword	*DEFORMABLE_TO_RIGID	
Name	loadcol1	
ID	2	
Color		
Include File	[Master Model]	
Card Image	Dform2Rigid	
Options	None	
ArrayCount		

- 2. For Name, enter dtor.
- 3. For ArrayCount, select 1.
- 4. For **PSID**, click *Unspecified* >> *Set*.

🗆 DtormzRigia_i i				
PTYPE	PSID			
PSID	Set		M 🗧	
MRB	<unspecified></unspecified>	-0		
DT /DE	DOFT			

- 5. In the **Select Set** dialog, select *set_part_seat* and then click *OK*.
- 6. For **MRB**, click **Unspecified** >> **Component**.
- 7. In the **Select Component** dialog, select *rigid block* and then click **OK**.
- 8. Click *Close*.

Step 22: Create *DEFORMABLE_TO_RIGID_AUTOMATIC to switch the rigid seat to deformable when contact between the seat and block is detected

 In the Solver browser, right-click and select Create > *DEFORMABLE_TO_RIGID > *DEFORMABLE_TO_RIGID_AUTOMATIC from the context menu. HyperMesh creates and opens a new load collector in the Entity Editor.

Entities	*	ID 💊 📦	*
	BLE_TO_RIGID_AUTOMATIC	(1)	Ξ
🤤 💺 Ioadco	11	2 🔲	
ELEMENT (0)			Ť
Name	Value		*
Solver Keyword	*DEFORMABLE_TO_RIGID_	AUTOMATIC	
Name	loadcol1		
ID	2		
Color			=
Include File	[Master Model]		
Card Image	Dform2Rigid		
Options	Automatic		
SWSET			
CODE			
TIME1			
TIME2			
TIME3			-

- 2. For Name, enter dtor_automatic.
- 3. For **SWSET** (set number of this automatic switch set), enter 1.
- 4. Set **CODE** (activation switch code) to **0**.
 - **Note**: The switch will take place at **[TIME1]**.
- 5. For TIME1, enter 175.

Note: The switch will not take place before this time.

- 6. For **R2D**, select **1**.
 - **Note:** On export, the number of rigid parts to be switched to deformable is written to the **R2D** field (card 2, field 6). This number is based on the number of parts in the entity set you select next.
- 7. Click *PSID* >> *Set*.

Note: PSIDR2D is the part ID of the part which is switched to a rigid material.

⊟ OFFS	ET			
🗆 Dfe	orm2Rigid_2 1			
	PTYPEOpt	PSID		
	PSID		Set	M 🔁
	PTYPE	PSET		_

8. In the **Select Set** dialog, select *set_part_seat* and then click *OK*.

Steps 23-27: Review the model's component data using the Model Browser, Solver Browser or Component Table tool

Method 1: Using the Model browser

Step 23: Display only parts with a particular material (Ex: steel)

1. In the **Model** browser, click 🚾.

- In the ELASTIC-PLASTIC folder, MATL24 folder, right-click on steel and select Isolate from the context menu. HyperMesh only displays the components that have the selected material assigned.
- 3. Review several materials, click ^w, select a material, and scroll through the material using the arrow keys in the **Model** browser. The corresponding parts are automatically isolated in the view.
- 4. Follow the above steps to select properties using the **Property View** option.

Step 24: Display all components

1. In the **Model** browser, click

Step 25: Rename a part

- 1. Right-click on the part you would like to rename, and then select *rename* from the context menu.
- 2. In the editable field, enter a new name for the entity. The part's new name changes in the **Solver** and **Model** browsers.

Step 26: Renumber a part ID

- 1. In the **Model** browser, click on a part's **ID** field. The ID field becomes editable.
- 2. Enter a number that does not conflict with the existing part IDs, and then press *Enter*.

Method 2: Using the Solver browser

Step 23: Display only parts with a particular material (Ex: steel)

- 1. In the **Model** browser, **Materials** folder, right-click on **Steel** and select **Isolate** from the context menu.
- 2. In the **Solver** browser, ***SECTION** folder, select components based on properties.

Step 24: Display all components

1. In the **Solver** browser, click the ***MAT** folder.

Step 25: Rename a part

- 1. In the **Solver** browser, select the part you would like to rename. The **Entity Editor** opens, and displays the part's corresponding data.
- 2. For **Name**, and enter a new name for the part. The part's new name changes in the **Solver** and **Model** browsers.

Step 26: Renumber a part ID

- 1. In the **Solver** browser, select the part you would like to change the ID of. The **Entity Editor** opens, and displays the part's corresponding data.
- 2. For *ID*, enter a new ID for the part. The part's new ID changes in the **Solver** and **Model** browser.

Method 3: Using the Component Table

Step 23: Display only parts with a particular material (Ex: steel)

- 1. From the menu bar, click *Tools* > *Component Table*.
- In the Components and Properties dialog, click Display > By Material from the menu bar.
- 3. In the panel area, click *mats*.
- 4. Select the material, *steel*.
- 5. Click *Select*.
- 6. Click *proceed*. The **Component Table** only displays the components with the material steel assigned. All other components are turned off.
- 7. To select components using the **By Properties** and **By thickness** options, repeat the above steps.

Step 24: Display all components

 From the menu bar, click *Display* > *All*. The table displays all of the components in the model.

Step 25: Rename a part

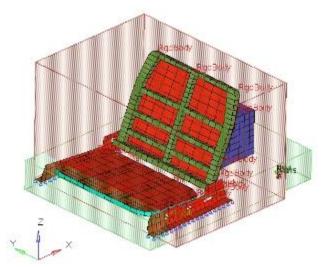
- From the menu bar, click Table > *Editable*. The table becomes editable. You can edit any of the columns that have a white background. For example, Part name, Part id, Thickness, and so on.
- 2. Click any **Part name** field. The field becomes editable.
- 3. Enter a new name for the part.
- 4. In the **Confirm** dialog, click **Yes**. The part's new name changes in the **Solver** and **Model** browsers.

Step 26: Renumber a part ID

- 1. From the menu bar, click **Table** > *Editable*. The table becomes editable.
- 2. Click any *Part Id* field. The field becomes editable.
- 3. Enter a new ID that does not conflict with any existing **part IDs**.
- 4. In the **Confirm** dialog, click **Yes**. The part's new ID changes in the **Solver** and **Model** browsers.

Step 27: Review the model's data using the Solver Browser

The created solver entities are listed in the **Solver** browser, within their corresponding folders. Use the following options on each entity to help navigate through the model: **Show**, **Hide**, **Isolate**, and **Review**.



- In the Solver browser, *DEFORMABLE_TO_RIGID folder, right-click on *dtor* and select *Isolate Only* from the context menu. HyperMesh only displays the entities that are referred in this keyword.
- 2. Highlight the entities that are referenced by this keyword by right-clicking on *dtor* and selecting *Review* from the context menu.
- 3. Right-click on the folder ***BOUNDARY** and then select **Show** from the context menu. HyperMesh displays the entities on which the loads in the folder are defined, as well as the load handles.

Exercise 2: Define Boundary Conditions and Loads for the Seat Impact Analysis

This exercise will help you become familiar with defining LS-DYNA boundary conditions and loads using HyperMesh.

In this exercise, you will define boundary conditions and load data for an LS-DYNA analysis of a vehicle seat impacting a rigid block. The seat and block model is shown in the image below.

Seat and block model

This exercise contains the following three tasks.

- Define gravity acting in the negative z-direction with *LOAD_BODY_Z
- Define the seat's acceleration with *BOUNDARY_PRESCRIBED_MOTION_NODE
- Export the model to an LS-DYNA 970 formatted input file and submit it to LS-DYNA

Step 1: Make sure the LS-DYNA user profile is still loaded

- 1. Start HyperMesh Desktop.
- 2. In the **User Profile** dialog, set the user profile to **LsDyna**.

Step 2: Retrieve the HyperMesh file

- 1. To open a model file, click *File* > *Open* > *Model* from the menu bar, or click **6** on the **Standard** toolbar.
- 2. In the **Open Model** dialog, open the seat_2.hm file. The model appears in the graphics area.
- 3. Observe the model using various visual options available in HyperMesh (rotation, zooming, etc.).

Step 3: Define gravity acting in the negative z-direction with *LOAD_BODY_Z

 In the Solver browser, right-click and select Create > *LOAD > *LOAD_BODY_Z from the context menu. HyperMesh creates and opens a new load collector in the Entity Editor.

Entities		ID	ŵ	*
🖨 💼 🛛 *LOAD (1)				
🖹 🛺 ×load_bo)DY_Z (1)			Ξ
🛄 🛃 loadc	ol1	- 4		
🗄 💼 🛛 *MAT (3)				-
Name	Value			
Solver Keyword	*LOAD_BODY_Z			
Name	loadcol1			
ID	4			Ξ
Color				
Include File	[Master Model]			
Card Image	LoadBody			
X_Direction				
Y_Direction				
Z_Direction				
LCID				Ŧ

- 2. For Name, enter gravity.
- 3. Click *LCID*, and then click *curve*.

Y_Direction			
Z_Direction			
LCID	•	Curve	N 🔁 🗸
SF			15

4. In the **Select Curve** dialog, select *gravity curve* and then click **OK**.

4	Select Curve		
	Name	Id	Color
	curve1	3	
	curve2	4	
	acceleration curve	1	
	gravity curve	2	
		OK	Cancel

5. For **SF** (scale factor for acceleration in z-direction), enter 0.001.

Steps 4-6: Define the seat's acceleration with *BOUNDARY_PRESCRIBED_MOTION_NODE

Step 4: Create a load collector for the acceleration loads to be created

1. In the **Model** browser, right-click and select *Create* > *Load Collector* from the context menu. HyperMesh creates and opens a new load collector in the **Entity Editor**.

Entities	ID 📀
- B	dtor_automatic 2 📃
- B	gravity 4 🔲
	loadcol1 5 🔲
📥 🔂 Matarial	(3)
Name	Value
Name	accel
ID	1 edeoli
Color	
Include File	[Master Model]
Card Image	<none></none>

- 2. For Name, enter accel.
- 3. Set Card Image to <*None*>.
- 4. Optional. Click the *Color* icon, and select a color for the load collector.

Step 5: Create acceleration loads on nodes

- Open the Accelerations panel by clicking BCs > Create > Accelerations from the menu bar.
- 2. Click **load types =**, and select *PrcrbAcc_S*.

- 3. Click *sets*.
- 4. Select the set, *accel_nodes*.
- 5. Click *select*.
- 6. Click the *magnitude* = switch, and select *curve*, *vector*.
- 7. In the **magnitude**= field, enter 0.001.
 - **Note**: This is the scale factor for the pre-defined curve to be specified in the next step for the acceleration loads. It will define the seat's acceleration as a function of time.
- 8. Set the orientation selector to *x-axis*.

Note: This is the x-translational degree of freedom.

- 9. Double-click *curve*.
- 10. Select the curve, *acceleration curve*.
- 11. In the **magnitude%** = field, enter 1.0E+7.

Note: This is the scale factor for the graphical representation of the acceleration loads. It does not affect the actual acceleration value.

- 12. Click *create.* HyperMesh creates the acceleration loads.
- 13. Click *return*.

Step 6: Export the model to an LS-DYNA 971 formatted input file

- 1. From the menu bar, click *File* > *Export* > *Solver Deck*.
- 2. In the Export Solver Deck tab, set File type to Ls-Dyna.
- 3. In the **File** field, navigate to your working directory and save the file as seat_complete.key.
- 4. Click *Export*.

Step 7 (Optional): Submit the LS-DYNA input file to LS-DYNA 971

- 1. From the **Start** menu on your desktop, open the **LS-DYNA Manager** program.
- 2. From the **solvers** menu, select **Start LS-DYNA analysis**.
- 3. Load the file seat_complete.key.
- 4. Click **OK** to start the analysis.

Step 8 (Optional): View the results in HyperView

The exercise is complete. Save your work as a HyperMesh file.