

altairhyperworks.com

HM-4605: Defining LS-DYNA Model and Load Data, Controls, and Output

In this tutorial, you will learn to:

- View LS-DYNA keywords in HyperMesh as they will appear in the exported LS-DYNA input file
- Understand part, material, and section creation and element organization
- Create sets
- Create velocities
- Understand the relation of LS-DYNA entity type to HyperMesh element and load configurations
- Create nodal single point constraints
- Create contacts with set segment ID
- Define output and termination
- Export models to LS-DYNA formatted input files

Tools/Utilities

The following tools/utilities set the foundation for settings up an LS-DYNA input deck with HyperMesh:

- LS-DYNA FE input translator
- FE output template
- LS-DYNA Utility menu
- LS-DYNA User Profile

Model Files

This tutorial uses the head_start.hm, head_2.hm, and head_3.hm files, which can be found in <hm.zip>/interfaces/lsdyna/. Copy the file(s) from this directory to your working directory.

Exercises

This tutorial contains the following exercises:

Exercise 1: Define Model Data for the Head and A-Pillar Impact Analysis Exercise 2: Define Boundary Conditions and Loads for the Head and A-Pillar Impact Analysis Exercise 3: Define Termination and Output for the Head and A-Pillar Impact Analysis

Exercise 1: Define Model Data for the Head and A-Pillar Impact Analysis

Element property and material assignment rules are based on the current user profile (solver interface).

Element Property and Material Assignment Rules for LS-DYNA Solver

- Components have no card images; typically "part" card images.
- Properties and materials are only assigned to components; properties and materials are not directly assigned to elements. Use the **Entity Editor** to assign properties and materials to components.
- Elements are assigned through the property and material assigned to the component in which they are organized into.
- If a component is not assigned to a property or material, then all of the elements within that component will not have a property or material assignment.

Property/Material Assignment Schematic

The figure below shows how the keywords *PART, *ELEMENT, *MAT, and *SECTION relate to each other.

Relation of *PART, *ELEMENT, *MAT, and *SECTION to Each Other

*ELEMENT EID PID

- *PART PID SID MID
- *SECTION SID
- *MAT MID

A *PART shares attributes such as section properties (*SECTION) and a material model (*MAT). A group of elements (*ELEMENT) sharing common attributes generally share a common part ID (PID). The figure below shows how the keywords *PART, *ELEMENT, *MAT and *SECTION relate to each other. A unique PID assigns a material ID (MID) and a section ID (SID) to an element.

The table below shows how the *ELEMENT, *PART, *SECTION, and *MAT keywords are organized in HyperMesh.

*ELEMENT	EID	PID	Elements are organized into a component collector
*PART PID	SID	MID	Component collector's card image
*SECTION	SID		Property collector with a property card image. Assign a property to a *PART by pointing to the property collector in the component collector's card image.
*MAT	MID		Material collector with a material card image. Assign the material to the *PART by associating the material collector to the component collector.

Create and modify component, property, and material collectors in the **Collectors** panel, **Model** or **Solver** browser, and **Entity Editor**.

View LS-DYNA Keywords in HyperMesh

Use a HyperMesh card image to view the keywords and data lines for defined LS-DYNA entities as interpreted by the loaded template. The keywords and data lines appear in the exported LS-DYNA input file as you see them in the card images. Additionally, for some card images, you can define and edit various parameters and data items for the corresponding LS-DYNA keyword.

View card images using the **Card Editor**, which can be accessed by doing one of the following:

- From the menu bar, click *Tools* > *Card Edit*.
- On the **Collectors** toolbar, click 🥨.

• In the **Model** browser or **Solver** browser, right-click on an entity and select **Card Edit** from the context menu.

Create *MAT

In HyperMesh, a *MAT is a material collector with a card image. To relate it to a *PART, the material collector is associated to a component collector.

Create a material collector by doing one of the following:

- In the **Model** browser or **Solver** browser, right-click and select **Create** > **Material** from the context menu.
- From the menu bar, click *Materials* > *Create*.
- On the **Collectors** toolbar, click

Update a Component's Material

Change the material assigned to a component in the **Component Collectors** panel, **update** subpanel, or in the **Entity Editor**.

- Access the update subpanel by clicking Solution on the Collectors toolbar.
- Access the **Entity Editor** by left-clicking on a component in the **Model** or **Solver** browser.

Material Table

Use the Material Table to:

- View existing materials in an interactive tabular list
- Create materials
- Merge identical materials
- Search for duplicate materials
- Change the properties of existing materials

The Material Table can be accessed in the LS-DYNA **Utility** menu, **DYNA Tools** page, under **Parts**.

Create *SECTION

In HyperMesh, *SECTION is a property collector with a card image.

Create a property collector by doing one of the following:

- In the **Model** browser or **Solver** browser, right-click and select **Create** > **Property** from the context menu.
- From the menu bar, click **Properties** > **Create** > **Properties**.

• On the **Collectors** toolbar, click 🌄.

Exercise Objective and Tasks

The purpose of this exercise is to help you become familiar with defining LS-DYNA materials, sections, and parts in HyperMesh.

In this exercise you will set up model data for a LS-DYNA analysis of a hybrid III dummy head impacting an A-pillar. The head and A-pillar model is depicted below.

Head and A-pillar model

This exercise contains the following tasks:

- Define the material *MAT_ELASTIC for the A-pillar part and head part
- Define *SECTION_SHELL for the A-pillar
- Define *SECTION_SOLID for the head
- Define *PART for the A-pillar and the head

Step 1: Load the LS-DYNA user profile

- 1. Start HyperMesh Desktop.
- 2. In the **User Profile** dialog, set the user profile to **LsDyna**.

Step 2: Retrieve the HyperMesh file

- Open a model file by clicking *File* > *Open* > *Model* from the menu bar, or clicking on the **Standard** toolbar.
- 2. In the **Open Model** dialog, open the <code>head_start.hm</code> file. The model appears in the graphics area.

Step 3: Define the material *MAT_ELASTIC for the A-pillar and head

 In the Solver browser, right-click and select Create > *MAT > MAT(1-50) > 1 -*MAT_ELASTIC from the context menu. HyperMesh creates and opens a new material in the Entity Editor.

Entities	ID 😒 💷
*ELEMENT (78	34)
• *MAT (1)	
• 🙀 1 - *MAT_EL	ASTIC (1)
🔤 😰 material1	1
*SET (1)	
Nama	Value
Solver Keyword	
Namo	material1
	1
Color	, ,
Include	Master Medell
Defined	[waster wodel]
Defined	
Card Image	MATLI
User Comments	Hide In Menu/Export
Туре	Regular
Fluid_Option	
Title	
Rho	
E	
PR	
DA	
DB	
BULK	

- 2. For Name, enter ELASTIC.
- 3. For Rho (Density), enter 1.2E-6.
- 4. For **E** (Young's modulus), enter 210.
- 5. For **PR** (Poisson's ratio), enter 0.26.

Name	Value
Solver Keyword	*MAT_ELASTIC
Name	ELASTIC
ID	1
Color	
Include	[Master Model]
Defined	
Card Image	MATL1
User Comments	Hide In Menu/Export
Туре	Regular
Fluid_Option	
Title	
Rho	1.2e-06
E	
PR	0.26
DA	
DB	
BULK	

Step 4: Define property (*SECTION_SHELL) with a thickness of 3.5 mm for the A-pillar

- In the Solver browser, right-click and select *Create* > *SECTION > *SECTION_SHELL from the context menu. HyperMesh creates and opens a new property in the Entity Editor.
- 2. For Name, enter section3.5.
- 3. For Card Image, select SectShll
- 4. Expand *NonUniformThickness*, and enter 3.5 for **T1**.

Name	Value
Solver Keyword	*SECTION_SHELL
Name	section3.5
ID	1
Color	
Include	[Master Model]
Defined	
Card Image	SectShll
Options	NONE
Title	
SHRF	
NIP	
PROPT	
ICOMP	
SETYP	
NonUniformThickness	
T1	3.5
NLOC	
MAREA	
EDGSET	

Step 5: Define *SECTION_SOLID for the head

- In the Solver browser, right-click and select Create > *SECTION > *SECTION_SOLID from the context menu. HyperMesh creates and opens a new property in the Entity Editor.
- 2. For Name, enter solid.

Step 6: Define *PART for the A-pillar

MAT_ELASTIC is the material collector named "**ELASTIC**"; ***SECTION_SHELL** is the property collector named "**section3.5**".

1. In the **Model** browser, **Component** folder, click *pillar*. The **Entity Editor** opens, and displays the component's corresponding data.

- 2. Set **Card image** to **Part**.
- 3. For Material, click *Unspecified* >> *Material*.

Card Image	Fall		
Property	<unspecified></unspecified>		
Material	Material	N	M 🔁
Options	None	-0	
CuproForAdoptivity			

4. In the **Select Material** dialog, select *ELASTIC* and then click *OK*. HyperMesh assigns the material **Elastic** to the component **pillar**.

💗 Select Material					
Ent	er Search Str	ing			् •
۲	Name ELASTIC	ID 1	Color	Card Image MATL1	Defined
				ОК	Cancel

- 5. For **Property**, click *Unspecified* >> *Property*.
- 6. In the **Select Property** dialog, select *section3.5* and then click *OK*. HyperMesh assigns the property **section3.5** to the component **pillar**.

Step 7: Define *PART for the head

***MAT_ELASTIC** is the material collector named "**ELASTIC**"; ***SECTION_SOLID** is the property collector named "**solid**".

1. In the **Model** browser, **Component** folder, click *head*. The **Entity Editor** opens, and displays the component's corresponding data.

Entities	ID (Include
Components (2)			
- 💋 🎛 pillar	1		0
🗖 🖽 head	2 [0
🗝 🙀 Materials (1)			
🔛 Droportion (?)			
Name	Valu	e	
Name	head	d	
ID	2		
Color			
FE style	•		
Geometry style	\$		
Include	[Mas	ster	Model]
Defined	V		
Card Image	<no< td=""><td>ne></td><td>•</td></no<>	ne>	•
Property	<uns< td=""><td>spe</td><td>cified></td></uns<>	spe	cified>
Material	<uns< td=""><td>spe</td><td>cified></td></uns<>	spe	cified>

- 2. Set Card Image to *Part*.
- 3. Assign the material **ELASTIC** to the component.
- 4. Assign the property **solid** to the component.

Name	Value
Solver Keyword	*PART
Name	head
ID	2
Color	
FE style	
Geometry style	4
Include	[Master Model]
Defined	
Card Image	Part
Property	(2) solid
Material	(1) ELASTIC
Optiona	Nana

Step 8 (Optional): Save your work

The exercise is complete. Save your work as a HyperMesh file named head_2.hm.

Exercise 2: Define Boundary Conditions and Loads for the Head and A-Pillar Impact Analysis

*INITIAL_VELOCITY_(Option)

LS-DYNA keywords used for defining initial velocity.

LS-DYNA keyword	Velocity applied to	Setup in HyperMesh
*INITIAL_VELOCITY	set of nodes, *SET_NODE_LIST	Entity set of nodes, load collector with InitialVel card image
*INITIAL_VELOCITY_GENERATIO N	one *PART or set of parts, *SET_PART_LIST	Entity set of comps, load collector with InitialVel card image
*INITIAL_VELOCITY_NODE	individual nodes	Created from Velocity panel, organized in load collector with no card image

*SET

Graphically view a set's contents in the **Entity Sets** panel using the **review** function.

HyperMesh Entity Configurations and Types

HyperMesh elements and loads have two identifiers:

- **Configuration** a HyperMesh core feature.
- **Type** defined by the loaded FE output template. A configuration can support multiple types. Before creating elements or loads, select the desired type from either the Elem Types panel.

Only use the **Load Types** subpanel to directly create loads on nodes or elements. For all other cases, define loads by creating a load collector with a card image. For example, *INITIAL_VELOCITY_NODE (applied directly to nodes) is created from the **Velocities** panel, while *INITIAL_VELOCITY (applied to nodes in a set) is a load collector with the **InitialVel** card image.

View a list of element and load configurations in the **Elem Types** panel and the **Load Types** panel, respectively.

elem types panel

force =	NodePnt	temperature =	IniTmpNod	update
moment =	NodePnt	velocity =	PrcrbVel_	
constraint =	BoundSPC	acceleration =	PrcrbAcc_	✓ loads I4
pressure =	SegmentPr	equation =	Equations	
			·	
				return

load types panel

Some element configurations are rigid and quad4. When you load a dyna.key template, the following types of the rigid configuration are available: RgdBody, ConNode, and GenWeld (*CONSTRAINED_NODAL_RIGID_BODY, *CONSTRAINED_NODE_SET, and *CONSTRAINED_GENERALIZED_WELD_SPOT).

Similarly, some load configurations are force and pressure. Types of the pressure configuration are ShellPres and SegmentPre (*LOAD_SHELL_ELEMENT and *LOAD_SEGMENT).

Most element and load configurations have their own panels. For example, rigids are created with the **Rigids** panel and constraints are created with the **Constraints** panel.

*BOUNDARY_SPC_(Option)

LS-DYNA keywords used for defining nodal single point constraints.

LS-DYNA keyword	Constraint applied to	Setup in HyperMesh
*BOUNDARY_SPC_NODE	individual nodes	These are constraints created from the Constraints panel and organized into a load collector with no card image.
*BOUNDARY_SPC_SET	a set of nodes *SET_NODE_LIST	This is an entity set of nodes referenced in a load collector's BoundSpcSet card image.

*CONTACT and *SET_SEGMENT

A LS-DYNA contact is a HyperMesh group. Select groups when you want to manipulate a *CONTACT, such as delete, renumber, or display it off.

LS-DYNA Contact Master and Slave Types

LS-DYNA has multiple contact master and slave types from which to choose.

*SET_SEGMENT and Contactsurfs Panel

Create a *SET_SEGMENT by right-clicking in the **Solver** browser and selecting **Create** > ***SET** > ***SET_SEGMENT** from the context menu. Additionally, add and remove elements from an existing *SET_SEGMENT and adjust the normal of segments without adjusting the normal of elements with the **Contactsurfs** panel.

The graphical representation of a contactsurf is pyramids, one pyramid for each segment. The orientation of a pyramid represents the normal orientation of the segment.

By default, the orientation of a pyramid is the same as the normal of the element underneath.

Exercise Objective and Tasks

The purpose of this exercise is to help you become familiar with defining LS-DYNA boundary conditions, loads, and contacts in HyperMesh.

In this exercise you will set up the boundary conditions and load data for a LS-DYNA analysis of a hybrid III dummy head impacting an A-pillar. The head and A-pillar model is depicted below.

Head and A-pillar model

This exercise contains the following tasks:

- Define velocity on all nodes of the head with *INITIAL_VELOCITY
- Constrain the pillar's end nodes in all six degrees of freedom with *BOUNDARY_SPC_NODE
- Define a contact between the head and A-pillar with *CONTACT_AUTOMATIC_SURFACE_TO_SURFACE

Step 1: Load the LS-DYNA user profile

- 1. Start HyperMesh Desktop.
- 2. In the **User Profile** dialog, set the user profile to **LsDyna**.

Step 2: Retrieve the HyperMesh file

- 1. Open a model file by clicking *File* > *Open* > *Model* from the menu bar, or click ^{III} on the **Standard** toolbar.
- 2. In the **Open Model** dialog, open the head_2.hm file. The model appears in the graphics area.
- 3. Observe the model using various visual options available in HyperMesh (rotation, zooming, etc.).

p.13

Step 3: Create a node set, *SET_NODE_LIST, containing all the nodes in the head component

 In the Solver browser, right-click and select Create > *SET > *SET_NODE > *SET_NODE_LIST from the context menu. HyperMesh creates and opens a new set in the Entity Editor.

Entities	ID 📀 💵	
* *SECTION (2)		•
• 💼 *SET (2)		
SET_NODE	E_LIST (2)	
	r SPC 1	
	2	
		۷
Name	Value	*
Solver Keyword	*SET_NODE_LIST	
Name	set1	
ID	2	
Include	[Master Model]	
Defined		
Card Image	Node	

- 2. For Name, enter Vel_Nodes.
- 3. For Entity IDs, click *0 Nodes* >> *Nodes*.

Caru image	NUGe			
Set type	non-ordered			
Entity IDs		Nodes		М
Options	None		N	
Colloct				

- 4. In the panel area, click **nodes** >> **by collector**.
- 5. Select the component, *head*.

pillar	<u>-</u>	~	comps	K
🔽 🔲 head	•	all		
	<<	<	1 >	>>
		select	reje	ct
	_	name	re	eturn

- 6. Click *select*.
- 7. Click *proceed*.

Step 4: Define the velocity

 In the Solver browser, right-click and select Create > *INITIAL >*INITIAL_VELOCITY from the context menu. HyperMesh creates and opens a new load collector in the Entity Editor.

- 2. For Name, enter init_vel.
- 3. Click **NSID** (Node Set ID), and then click **Set**.
- 4. In the **Select Set** dialog, select **Vel_Nodes** and then click **OK**.
- 5. For VX (x-component of mass center of velocity), enter 5.

- 1. In the **Model** browser, right-click and select *Create* > *Load Collector* from the context menu. HyperMesh creates and opens a new load collector in the **Entity Editor**.
- 2. For Name, enter SPC.
- 3. Optional: Click the *Color* icon, and select a color to display the load collector.
- 4. Set Card Image to <*None*>.

Step 6: Create constraints on the pillar's end nodes

- In the Solver browser, right-click and select *Create* > **BOUNDARY* > **BOUNDARY_SPC_NODE* from the context menu. The Constraints panel opens.
- 2. In the panel area, set the entity selector to *nodes*.
- 3. Click *nodes* >> *by sets*.
- 4. Select the entity set, *nodes for SPC*.

5. Click *select*. HyperMesh selects the nodes on both ends of the pillar.

- 6. Verify that all six **dof** (degree of freedom) checkboxes are selected.
- 7. Verify that the **load type** is set to **BoundSPC**.
- 8. Select the *label constraints* checkbox to display each constraint's label in the graphics area.
- 9. Click *create*.

Step 7: Define a *SET_SEGMENT for the slave entities, the A-pillar elements

- In the Solver browser, right-click and select Create > *SET > *SET_SEGMENT > *SET_SEGMENT from the context menu. HyperMesh creates and opens a new contactsurf in the Entity Editor.
- 2. For Name, enter pillar_slave.
- 3. Optional. Click the *Color* icon, and select a color to display the contactsurf.
- 4. For *Elements*, click *O Elements* >> *Elements*.
- 5. In the panel area, set the second switch to *elems*.

- 6. Click *elems* >> *by collector*.
- 7. Select the component, *pillar*.

🔽 📕 pillar		•	comps	
F head	•	all		
	<<	<	1 >	>>
		select	reject	
	_	name		Im

- 8. Click *select*.
- 9. Click *add*.
- 10. Review the contactsurf to make sure that its pyramids are pointing out of the pillar.

Step 8: Define a *SET_SEGMENT for the master entities, the head elements

- In the Solver browser, right-click and select Create > *SET > *SET_SEGMENT > *SET_SEGMENT from the context menu. HyperMesh creates and opens a new contactsurf in the Entity Editor.
- 2. For Name, enter head_master.
- 3. Optional. Click the *Color* icon, and select a color to display the contactsurf.
- 4. For *Elements*, click *O Elements* >> *Elements*.
- 5. In the panel area, set the first switch to *add solid faces*.

- 6. Set the second switch to *elems*.
- 7. Click *elems* >> *by collector*.
- 8. Select the component, *head*.

pillar		-	comps	M
🔽 🗖 head	~	all		
	<<	<	$1 \rightarrow $	>>
		select	reject	
	~	name	retu	m

- 9. Click *select*.
- 10. Using the *nodes* selector, select three nodes that belong to the same face of a solid element.
- 11. In the face angle field, enter 30.
- 12. Click *add*.
- 13. Review the contactsurf to make sure that its pyramids are pointing out of the head.

Step 9: Create a HyperMesh group with the SurfaceToSurface card image

- In the Solver browser, right-click and select Create > *CONTACT > *CONTACT_SURFACE_TO_SURFACE > *CONTACT_SURFACE_TO_SURFACE from the context menu. HyperMesh creates and opens a new group in the Entity Editor.
- 2. For Name, enter contact.

Step 10: Add the slave and master contactsurfs to the HyperMesh group

In this step, the **Entity Editor** should still be open for the group, **contact**.

- 1. In the **Entity Editor**, click **MSID** and set the entity selector to **Contactsurfs**.
- 2. Click *Contactsurfs*.
- 3. In the **Select Contactsurfs** dialog, select *head_master* and then click **OK**.
- 4. Click **SSID**, and set the entity selector to **Contactsurfs**.
- 5. Click *Contactsurfs*.
- 6. In the **Select Contactsurfs** dialog, select *pillar_slave* and then click **OK**.

Step 11: Edit the group's card image to define the AUTOMATIC option

In this step, the **Entity Editor** should still be open for the group, **contact**.

1. In the **Entity Editor**, for the first **Options** parameter, select **Automatic**.

Step 12: Review the group's master and slave surfaces

- 1. Open the **Interfaces** panel by clicking *interfaces* from the *Analysis* page.
- 2. Go to the **add** subpanel.
- 3. Click **name=**, and select **contact**.

4. Click *review*. HyperMesh temporarily displays the master and slave entities in blue and red, respectively.

Step 13 (Optional): Save your work

The exercise is complete. Save your work as a HyperMesh file named head_3.hm.

Exercise 3: Define Termination and Output for the Head and A-Pillar Impact Analysis

***CONTROL and *DATABASE**

*CONTROL cards are optional, but can be used to change defaults and activate solution options, such as mass scaling, adaptive meshing, and an implicit solution. It is advisable to define *CONTROL_TERMINATION in a model to specify a job's end time.

*DATABASE cards are optional, but are necessary to obtain output files containing results.

Exercise Objective and Tasks

The purpose of this exercise is to help you become familiar with defining LS-DYNA control data and output requests in HyperMesh.

In this you will define the termination and output for a LS-DYNA analysis of a hybrid III dummy head impacting an A-pillar. The head and A-pillar model is shown in the image below.

Head and A-pillar model

This exercise contains the following tasks:

- Specify the time at which LS-DYNA is to stop the analysis with *CONTROL_TERMINATION
- Specify ASCII output with *DATABASE_(Option) cards

- Specify the output of d3plot files with *DATABASE_BINARY_D3PLOT
- Export the model to an LS-DYNA 970 formatted input file

Step 1: Load the LS-DYNA user profile

- 1. Start HyperMesh Desktop.
- 2. In the **User Profile** dialog, set the user profile to **LsDyna**.

Step 2: Retrieve the HyperMesh file

- Open a model file by clicking *File* > *Open* > *Model* from the menu bar, or clicking so the **Standard** toolbar.
- 2. In the **Open Model** dialog, open the head_3.hm file. The model appears in the graphics area.

Step 3: Specify the time at which you want LS-DYNA to stop the analysis with *CONTROL_TERMINATION

 In the Solver browser, right-click and select *Create > *CONTROL > *CONTROL_TERMINATION from the context menu. HyperMesh creates and opens a new control in the Entity Editor.

Entities		ID 😵 🗊	
* BOUNDARY	(32)		*
• 🖬 *CONTROL (1)		
+ 🏀 *CONTROL	_TERMINATION (1)		
C Termin		1	
ELEMENT (7	84)		*
Name	Value		*
Solver Keyword	*CONTROL_TER	MINATION	
Include	[Master Model]		
Name	Termin		
Status			
ENDTIM			
ENDCYC			
DTMIN			
ENDENG			
ENDMAS			
NOSOL			

2. For ENDTIM (termination time), enter 2.5.

Step 4: Specify the output of d3plot files with *DATABASE_BINARY_D3PLOT

- In the Solver browser, right-click and select *Create* > *DATABASE > *DATABASE_BINARY_D3PLOT from the context menu. HyperMesh creates and opens a new database in the Entity Editor.
- 2. For **DT** (time interval between outputs), enter 0.1.

Step 5: Specify ASCII output with *DATABASE_(Option) cards

- In the Solver browser, right-click and select Create > *DATABASE > *DATABASE_OPTION from the context menu. HyperMesh creates and opens a new database in the Entity Editor.
- 2. Select the *GLSTAT* checkbox.
- 3. For **DT**, enter 0.1.

Note: This specifies the output of global data at every 0.1 ms.

- 4. Select the **MATSUM** checkbox.
- 5. For **DT**, enter 0.1.

Note: This specifies the output of material energies every 0.1 ms.

- 6. Select the **SPCFORC** checkbox.
- 7. For **DT**, enter 0.1.

Note: This specifies the output of SPC reaction forces every 0.1 ms.

Step 6: Export the model as an LS-DYNA keyword file

- 1. From the menu bar, click *File* > *Export* > *Solver Deck*.
- 2. In the **Export Solver Deck** tab, set **File type** to *LsDyna*.
- 3. From the **Template** list, select appropriate template.
- 4. In the **File** field, navigate to your working directory and save the file as head_complete.key.
- 5. Click *Export*.

Step 7 (Optional): Submit the LS-DYNA input file to LS-DYNA 970

- 1. From your desktop's **Start** menu, open the **LS-DYNA Manager** program.
- 2. From the **solvers** menu, select **Start LS-DYNA analysis**.
- 3. Load the file head_complete.key.
- 4. Click **OK** to start the analysis.

Step 8 (Optional): Post-process the LS-DYNA results using HyperView

The exercise is complete. Save your work to a HyperMesh file.

