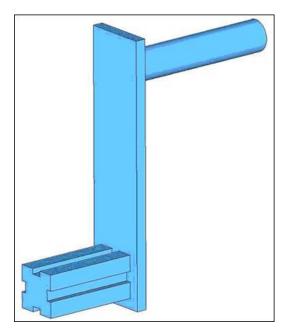
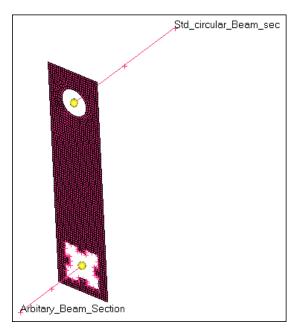


altairhyperworks.com

HM-4450: Introduction to HyperBeam


In this tutorial, you will learn how to:


- Assign a standard beam section using the **Section** panel.
- Assign the arbitrary beam section using the **HyperBeam** panel.
- Couple degrees of freedom.

The steps involved include:

- Loading the ANSYS user profile
- Retrieving the HyperMesh model files for this tutorial
- Adding element types
- Creating collectors
- Creating beam elements
- Coupling DOF Rigid elements creation
- Creating standard circular beam sections
- Creating arbitrary beam sections
- Updating component collectors with respective beam section collectors

The following images are a pictorial representation of the original model. The model can be simplified in such a way that you can extract represent the entire model with a set of shell elements representing the plate part of the model and two lines indicating the beam.

Model Files

```
This exercise uses the chapter3.hm file, which can be found in <hm.zip>/interfaces/ansys/. Copy the file(s) from this directory to your working directory.
```

Exercise

Step 1: Load the ANSYS User Profile

- 1. Start HyperMesh Desktop.
- 2. In the **User Profile** dialog, set the user profile to **Ansys**.

Step 2: Retrieve the HyperMesh Model File

- 1. From the menu bar, click *File* > *Open* > *Model*.
- 2. In the **Open Model** dialog, open the chapter3.hm file. The model shown above displays in the graphics area.

This model contains a plate collector containing shell elements. The plate component is updated with the necessary element type, real constant, and material properties.

Entities	ID	
🖽 🛼 Assembly Hierarchy		
🖨 🚭 Component (1)		
🚽 🗭 Plate	1	
🖨 🝓 Load Step (1)		
🔤 📥 all	1	
🖨 🍖 Material (1)		
🔤 😰 Steel	1	
🖹 📚 Property (1)		
PROP_1	1	
🖨 🚰 Sensor (1)		
- 🛱 ET_2	1	
🖨 🙀 Set (3)		
	1	
	2	
	3	
🗎 🏷 Tag (2)		
Arbitary_Beam_Section:	1	
Std_circular_Beam_sec:	2	
🗄 📁 Title (1)		

3. If your model's elements and mesh lines are not shaded, click 🖤 on the **Visualization** toolbar.

Step 3: Create Collectors and Attach Element Types and Materials to Them

1. In the **Model** browser, right-click and select *Create* > *Component* from the context menu. HyperMesh creates and opens a component in the **Entity Editor**.

Entities	ID 😒	_
🖶 💊 Component (2)		=
🗾 🗗 Plate	1 📕	
💴 🗾 🖽 component1	2	
🗄 🔂 Load Step (1)		
Name	Value	
Name	component1	
ID	2	
Color		
Card Image	HM_COMP	
Туре	<unspecified></unspecified>	
Property	<unspecified></unspecified>	
Material	<unspecified></unspecified>	

- 2. For Name, enter beam std.
- 3. Click the *Color* icon, and select a color.
- 4. Right-click on *Type* and select *Create* from the context menu. The **Create Sensors** dialog opens.

Name		Value	
Name		beam_std	
ID		2	
Color			
Card Ima	ge	HM_COMP	
Туре		 All pape pified> 	
Property	Create	pified>	
Material	Edit	;ified>	
	Show		
	Hide		
	Isolate		
	XRef entities		
	Filter entitiesWarn upon entity type	e change	

5. Set **Element Type** to **BEAM188**.

sensor1
2
SHELL181 🗸
LINK180 🔺
SHELL181
PLANE182 PLANE183
MPC184
SOLID185
SOLID186
SOLID187
BEAM188

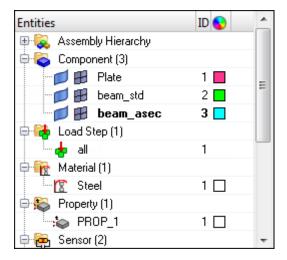
- 6. Click *Close*.
- 7. For Material, click *Unspecified* >> *Material*.
- 8. In the **Select Material** dialog, select **Steel** and then click **OK**.

4	Select Ma	ateria	al		×
					् 🗸
	Name	Id	Color	Card Image	Defined
	Steel	1		MATERIAL	
			[ОК	Cancel

- 9. In the **Model** browser, right-click and select *Create* > *Component* from the context menu. HyperMesh creates and opens a component in the **Entity Editor**.
- 10. For Name, enter beam_asec.
- 11. Click the *Color* icon, and select a new color.
- 12. For **Type**, click **Unspecified** >> **Sensor**.

000		
Card Image	HM_COMP	
Туре	Sensor 📃 📑	I
Property	<unspecified></unspecified>	
Matarial	z) Inconcriticals	

13. In the **Select Sensor** dialog, select **sensor1** (BEAM188) and then click **OK**.

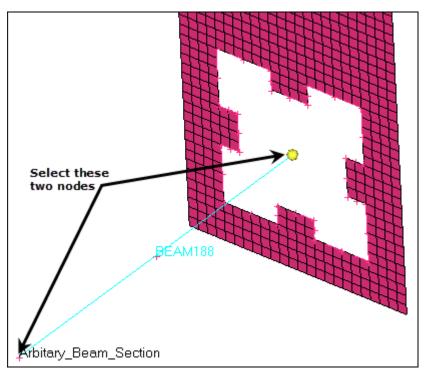


	er Search Stri			
	Name	ID	Color	Card Image
۲	ET_2	1		SHELL63
۲	sensor1	2		BEAM188

- 14. For Material, click *Unspecified* >> *Material*.
- 15. In the Select Material dialog, select Steel and then click OK.

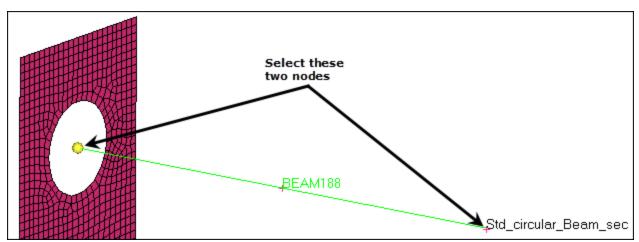
Step 4: Create a Beam Element

In the **Model** browser, notice that the current component is **beam_asec**.



- 1. Opens the **Bars** panel by clicking *Mesh* > *Create* > *1D Elements* > *Bars* from the menu bar.
- 2. Go to the **bar2** subpanel.
- 3. Set orientation to *plane*.
- 4. Set **Beam Y Axis** to *parallel to XY*.

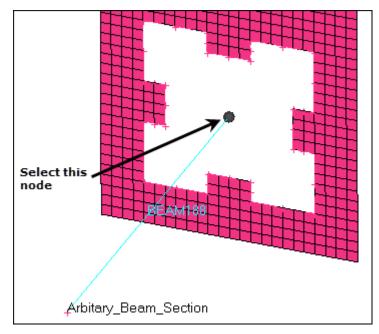
☞ bar2	node A		reje
o bar3	node B		revie
 update 		-	
orientation:			
•	Beam Y Axis:]	
	▼ parallel to XY		retu



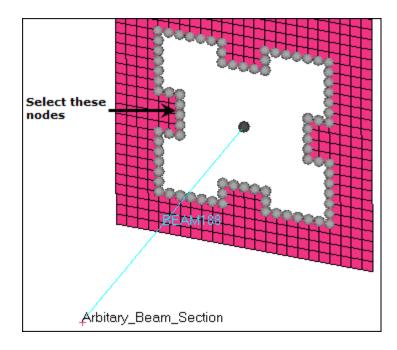
 Using the node A and node B selectors, select the two nodes that form the ends of the Arbitary_Beam_Section line as indicated in the following image. HyperMesh creates a BEAM188 element.

Note: Arbitary_Beam_Section is shown as a tag in the graphics area.

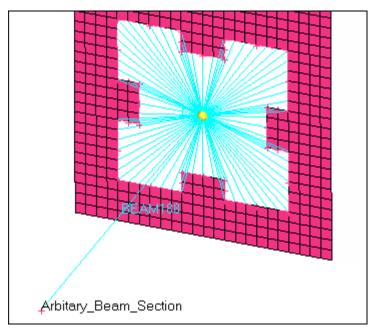
- 6. In the **Model** browser, **Component** folder, right-click on **beam_std** and select **Make** *Current* from the context menu.
- Using the node A and node B selectors, select the two nodes that form the ends of the Std_circular_Beam_sec line as indicated in the following image. HyperMesh creates a BEAM188 element.


8. Click *return* to exit the **bar2** panel.

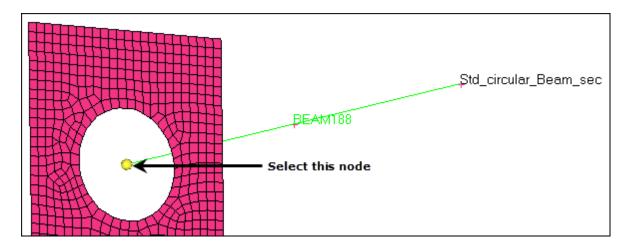
- 1. Open the **Rigids** panel by clicking *Mesh* > *Create* > *1D Elements* > *Rigids* from the menu bar.
- 2. Set the **dependent** selector to *multiple nodes*.
- 3. Select all of the *dof* checkboxes.


 create update combine 	independent: dependent:	▼ node ▼ nodes	I dof1 I dof2 I dof3	I dof4 I dof5 I dof6	create reject review
		🔲 attach dependent nodes as a se	et		
		elem types = CER I G			return

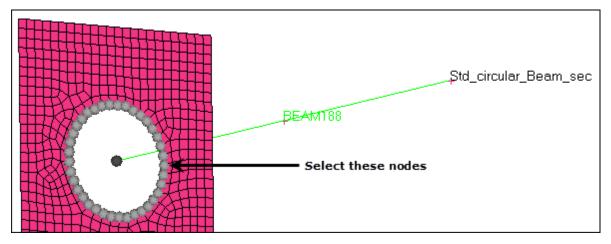
- 4. Set elem types to *CERIG*.
- 5. In the **Model** browser, **Component** folder, right-click on **beam_asec** and select **Make** *Current* from the context menu.
- 6. Activate the **independent** selector set to **node**.
- 7. On **Arbitary_Beam_Section**, select the independent node at the end of the beam element as indicated in the following image.



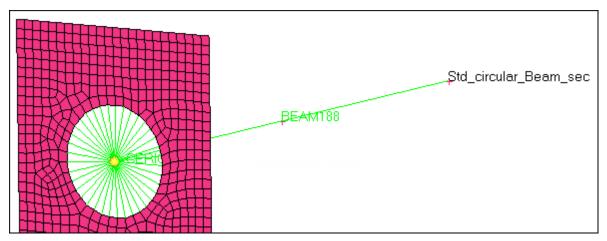
- 8. Click dependent: nodes >> by path.
- 9. On the **plate** component, select the dependent nodes indicated in the following image.



10. Click *create*.



- 11. In the **Model** browser, **Component** folder, right-click on **beam_std** and select **Make Current** from the context menu.
- 12. Activate the **independent** selector set to **node**.
- 13. On **Std_circular_Beam_sec**, select the independent node at the end of the beam element as indicated in the following image.



- 14. Click dependent: nodes >> by path.
- 15. On the **plate** component, select the dependent nodes indicated in the following image.

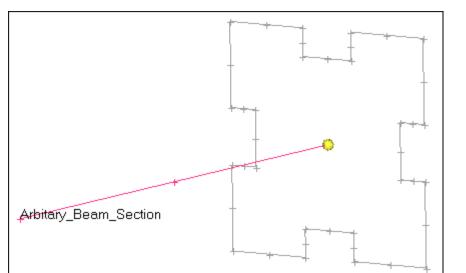
16. Click *create*.

17. Click *return* to exit the **Rigids** panel.

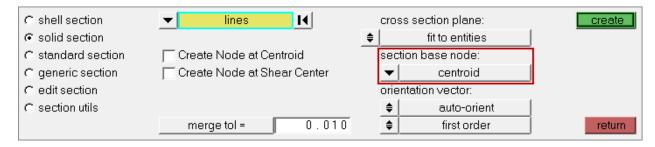
Step 6: Create and Attach a Standard Circle Property to a Component

- 1. In the **Model** browser, **Component** folder, click **beam_std**. The **Entity Editor** opens and displays the component's corresponding data.
- 2. Right-click on *property* and select *Create* from the context menu. The **Create Properties** dialog opens.
- 3. For Name, enter Circular_Sec.
- 4. Set **SUBTYPE** to **CSOLID**.
- 5. Under SECDATA, enter 15 for R.
- Click *Close*. HyperMesh assigns the property Circular_Sec to the component beam_std.

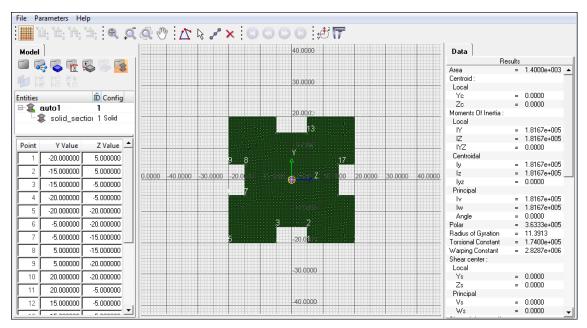
Step 7: Create an Arbitrary Property


- In the Model browser, right-click and select *Create* > *Property* from the context menu. HyperMesh creates and opens a property in the Entity Editor.
- 2. For Name, enter arbi_sec.
- 3. Set Card Image to SECTYPE.
- 4. In the **Model** browser, **Component** folder, click **#** next to **beam_std**, **beam_asec**, and **Plate** to turn off the display of their elements.

Note: You should only see geometric entities in the graphics area.

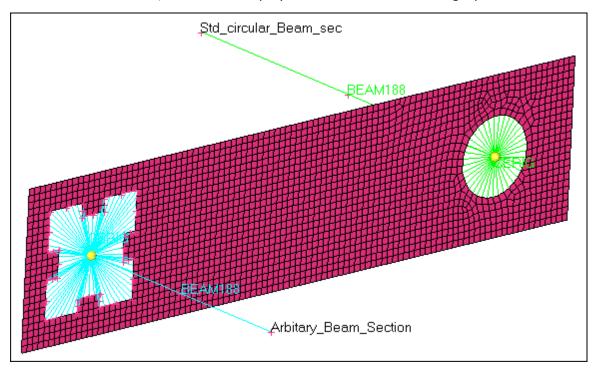

Entities	ID 😒
🗄 💫 Assembly Hierarchy	
🖃 🚭 Component (3)	
🗂 🗾 🕖 Plate	1 🗖
🚽 🗾 beam_std	2
🛄 🗾 😥 beam_asec	3 🗖
🗄 🔂 Load Step (1)	
🕮 😘 Metoriel (1)	

- 5. Open the **HyperBeam** panel by clicking **Properties** > **HyperBeam** from the menu bar.
- 6. Go to the **solid section** subpanel.
- 7. Set the entity selector to *lines*.
- 8. Select all of the lines (displayed in gray in the following image) that form the **Arbitrary_Beam_Section**.



9. Set section base node to *centroid*.

10. Click *create*. The **HyperBeam Data Model** dialog opens, meshes the area enclosed by the selected lines with quadrilateral elements, and calculates the properties using these elements.


- 11. Return to **HyperMesh** by clicking *File* > *Exit* from the menu bar.
- 12. Click *return* to exit the HyperBeam panel.
- 13. In the **Model** browser, **Properties** folder, click *arbi_sec*. The **Entity Editor** opens and displays the beam section's corresponding data.
- 14. For Hyper beam section [OPTIONAL], click Unspecified >> Beamsection.

SUBTYPE	RECT 15
Hyper beam section [OPTIONAL]	Beamsection N
TYPE	BEAM
Caru imaye	SECTIFE

15. In the **Select Beamsection** dialog, select *solid_section.0* and then click *OK*.

Step 8: Update the Component Collector with the Beam Section

- 1. In the **Model** browser, **Component** folder, click *beam_asec*. The **Entity Editor** opens and displays the component's corresponding data.
- 2. For **Property**, click **Unspecified** >> **Property**.
- 3. In the **Select Property** dialog, select *arbi_sec* and then click *OK*. HyperMesh attaches this property to the component.
- 4. In the **Model** browser, click $\stackrel{[e]}{=}$ to display all of the entities in the graphics area.

Step 9: Save you Work

- 1. From the menu bar, click *File* > *Save As* > *Model*.
- 2. In the **Save Model As** dialog, navigate to your working directory and save your file.

Step 10: Export the Deck to ANSYS *.cdb Format.

- 1. Open the **Export** tab by clicking *File* > *Export* > *Solver Deck* from the menu bar.
- 2. Set File type to Ansys.
 - **Note:** If you are in the **ANSYS** user profile, HyperMesh automatically sets the **File type** to Ansys and loads ANSYS as the default **Template**.
- 3. In the **File** field, navigate to your working directory and save the file as 4450_export.cdb.
- 4. Click *Export*.

