

altairhyperworks.com

#### HM-4410: Setting Up a Model in ANSYS

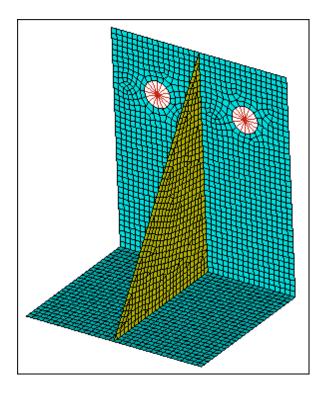
In this tutorial, you will learn how to:

- Load the ANSYS user profile
- Retrieve the HyperMesh model files for this tutorial
- Add an element type
- Apply the real constants for the elements of the model
- Apply the material properties for elements of the model
- Update each component with respective element type
- Update each component with respective real constants
- Update each component with respective material properties

The model setup includes: setting up of element type, real constants, material properties and component structure in HyperMesh for ANSYS.

## **Model Files**

This exercise uses the <code>chapter2\_1.hm</code> and <code>chapter2\_2.hm</code> files, which can be found in <hm.zip>/interfaces/ansys/. Copy the file(s) from this directory to your working directory.


## **Exercise 1**

## Step 1: Load the ANSYS user profile

- 1. Start HyperMesh Desktop.
- 2. In the User Profile dialog, select Ansys.

## Step 2: Retrieve the model file

- Open a model file by clicking *File* > *Open* > *Model* from the menu bar, or clicking so the **Standard** toolbar.
- 2. In the **Open Model** dialog, open the chapter2\_1.hm file.
- 3. If your model's elements and mesh lines are not shaded, click  $\widehat{\Psi}$  on the **Visualization** toolbar.



# Step 3: Add an element type

1. In the **Model** browser, right-click and select *Create* > *Sensor* from the context menu. HyperMesh creates and opens a sensor (Et Type) in the **Entity Editor**.

**Note:** The **Entity Editor** displays the new Sensor's (Et Type) card details.

| Entities               | ID |           |
|------------------------|----|-----------|
| 🕀 💫 Assembly Hierarchy |    |           |
| 🗄 🔞 Card (1)           |    |           |
| 🗄 🍣 Component (4)      |    |           |
| 🕀 🧊 Title (1)          |    |           |
| 🖹 👼 Sensor (1)         |    |           |
| 🛱 sensor1              | 1  |           |
|                        |    |           |
| Name                   |    | <br>Value |
|                        |    |           |
| Name                   |    | sensor1   |
| ID                     |    | 1         |
| Color                  |    |           |
| Element Type           |    | SHELL181  |
| KeyOpt1                |    |           |
| KeyOpt3                |    |           |
| KeyOpt5                |    |           |
| KeyOpt8                |    |           |
| KeyOpt9                |    |           |
| KeyOpt10               |    |           |

- 2. For **Name**, enter a new name for the Et Type.
- 3. Optional: For **ID**, enter a new ID for the Et Type.

**Note:** By default, HyperMesh sets the ID to 1. If you create a new Et Type, HyperMesh will set the ID to n+1.



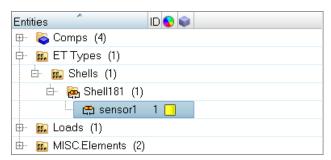
- 4. For **Element Type**, select a new element type.
  - **Note:** By default, HyperMesh set the **Element Type** to **SHELL181**. The elements in this model are of type SHELL181, therefore you do not need to change the element type for this tutorial.

| Name         | Value     |
|--------------|-----------|
| Name         | sensor1   |
| ID           | 1         |
| Color        |           |
| Element Type | SHELL181  |
| KeyOpt1      | SHELL163  |
| KeyOpt3      | SHELL181  |
| KeyOpt5      | SHELL208  |
| KeyOpt8      | SHELL209  |
| KeyOpt9      | SHELL28   |
| KeyOpt10     | SHELL281  |
|              | SHELL41   |
|              | SHELL43   |
|              | SHELL51   |
|              | SHELL57 - |

#### SHELL181

- Suitable for analyzing thin to moderately-thick shell structures. It is a 4-node element with six degrees of freedom at each node: translations in the x, y, and z direction; rotations about the x, y, and z axes (if the membrane option is used, the element has translational degrees of freedom only). The degenerate triangular option should only be used as filler elements in mesh generation.
- Well-suited for linear, large rotation, and/or large strain nonlinear applications. Change in shell thickness is accounted for nonlinear analysis. In the element domain, both full and reduced integration schemes are supported. SHELL181 accounts for follower (load stiffness) effects of distributed pressures.
- May be used for layered applications for modeling laminated composite shells or sandwich construction. The accuracy in modeling composite shells is governed by the first order shear deformation theory.
- Set the element stiffness (KeyOpt1), integration (KeyOpt3), layer data storage (KeyOpt8), thickness (KeyOpt9), and/or initial stress (KeyOpt10) options by selecting their corresponding checkboxes in the Value column. A value appears below each KeyOpt you selected.

| Name         | Value                                                        |
|--------------|--------------------------------------------------------------|
| Name         | sensor1                                                      |
| ID           | 1                                                            |
| Color        |                                                              |
| Element Type | SHELL181                                                     |
| 🖃 KeyOpt1    |                                                              |
| value        | 0-Bending and membrane stiffness                             |
| KeyOpt3      |                                                              |
| KeyOpt5      |                                                              |
| 🖃 KeyOpt8    |                                                              |
| value        | 0-Store data for bottom of bottom layer and top of top layer |
| KeyOpt9      |                                                              |
| 🖃 KeyOpt10   |                                                              |
| value        | 0-No user subroutine to provide initial stress               |




6. For each **KeyOpt** you selected, assign a **value**.

**Note:** For this tutorial, use the default value assigned to each KeyOpt.

| Name         | Value                                                        |
|--------------|--------------------------------------------------------------|
| Name         | sensor1                                                      |
| ID           | 1                                                            |
| Color        |                                                              |
| Element Type | SHELL181                                                     |
| 🖃 KeyOpt1    |                                                              |
| value        | 0-Bending and membrane stiffness                             |
| KeyOpt3      | 0-Bending and membrane stiffness 🛛 📐                         |
| KeyOpt5      | 1-Membrane stiffness only                                    |
| 🖃 KeyOpt8    | 2-Stress/strain evaluation only                              |
| value        | 0-Store data for bottom of bottom layer and top of top layer |
| KeyOpt9      |                                                              |
| 🖃 KeyOpt10   |                                                              |
| value        | 0-No user subroutine to provide initial stress               |

- Open the Solver browser by clicking View > Browsers > HyperMesh > Solver from the menu bar.
- 8. Review the ET Type you just created.



## **Step 4: Define material properties**

1. In the **Model** browser, right-click and select *Create* > *Material* from the context menu. HyperMesh creates and opens a material in the **Entity Editor**.

| Entities         | ID 😒      |
|------------------|-----------|
| 🕀 🧊 Title (1)    |           |
| 🗄 🚰 Sensor (1)   |           |
| 🖮 🍖 Material (1) |           |
| 🖹 material1      | 1 🗖       |
|                  |           |
| Name             | Value     |
| Name             | material1 |
| ID               | 1         |
| Color            |           |
| Defined Entity   |           |
| Card Image       | MPDATA    |
| DifferentTem     |           |
| MPTEMP           | 1         |
| Temp             |           |
| DENS             |           |
|                  |           |



- 2. For Name, enter Steel.
- 3. Optional: For **ID**, enter a new ID.

**Note:** By default, HyperMesh sets the ID to 1. If you create a new material, HyperMesh will set the ID to n+1.

4. Click the *Color* icon, and select a color.

#### 5. Set Card Image to MATERIAL.

| Name                              | Value         |
|-----------------------------------|---------------|
| Name                              | Steel         |
| ID                                | 1             |
| Color                             |               |
| Defined Entity                    |               |
| Card Image                        | MPDATA 🔽      |
| DifferentTempTableForEachMatProps | <none></none> |
| MPTEMP                            | MATERIAL 📐    |
| Temperature data                  | MPDATA        |
| DENS                              |               |
| EX                                |               |
| NEXY                              |               |

- 6. Select the *EX* (Elastic moduli) checkbox.
- 7. For **MP\_EX\_LEN** (Number of Elastic moduli to input), enter 1.

| Name             | Value    |
|------------------|----------|
| Name             | Steel    |
| ID               | 1        |
| Color            |          |
| Defined Entity   |          |
| Card Image       | MATERIAL |
| ■ MPTEMP         | 1        |
| Temperature data |          |
| DENS             |          |
| 🗏 EX             |          |
| ☐ MP_EX_LEN =    | 1        |
| Data: C          |          |
| NUXY             |          |
| ALPX             |          |

- 8. Under **MP\_EX\_LEN=**, next to **Data: C**, click 🔛.
- 9. In the **MP\_EX\_LEN=** dialog, enter 2.1e5.

| / MP_EX_LEN = | <b>×</b> |
|---------------|----------|
| С             |          |
| 1 2.1e5       |          |
|               |          |
|               |          |
|               | Close    |

10. Click Close.



- 11. Select the **NUXY** (Minor Poisson's ratio) checkbox.
- 12. For **MP\_NUXY\_LEN** (Number of Minor Poisson's ratio to input), enter 1.
- 13. Under **MP\_NUXY\_LEN=**, next to **Data: C**, click **Sec.**
- 14. In the **MP\_NUXY\_LEN=** dialog, enter 0.3.
- 15. Click Close.
- 16. Go to the **Solver** browser and review the material you just created.

## Step 5: Create the section card for the shell elements in the model

 In the Model browser, right-click and select *Create* > *Property* from the context menu. HyperMesh creates and opens a property in the Entity Editor.

| Entities          | ID 💊                                    | - |
|-------------------|-----------------------------------------|---|
| 🗄 🙀 Materials (1) |                                         |   |
| 🛱 🕵 Properties (1 | )                                       | = |
| broperty          |                                         |   |
| 🕀 🚘 Sensors (1)   |                                         |   |
| Name              | Value                                   |   |
| Name              | property1                               |   |
| ID                | 1                                       |   |
| Color             |                                         |   |
| Defined           |                                         | = |
| Card Image        | SHELL63p                                |   |
| 🖃 Real Constant   | S                                       |   |
| ТКІ               | 0.0                                     |   |
| TKJ               | 0.0                                     |   |
| ТКК               | 0.0                                     |   |
| TKL               | 0.0                                     |   |
| EFS               | 0.0                                     |   |
| THETA             | 0.0                                     |   |
| RMI               | 0.0                                     |   |
| CTOP              | 0.0                                     |   |
| opot              | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |   |

- 2. For Name, enter SECT1.
- 3. Optional: For **ID**, enter a new ID.

Ansys sections are supported under property, with a separate ID pool. Sections are created by setting the card image to SECTYPE. All cards created with the SECTYPE card image are organized under one ID pool. Properties created with a card image other than SECTYPE are organized under another ID pool. If you want to use the same IDs in these two pools, enable the **allow duplicate IDs** option in **Preferences** > **Meshing Options**. In earlier versions of HyperMesh (14.0 or before), Ansys sections were supported under beam section collectors.

**Note:** By default, HyperMesh sets the ID to 1. If you create another new beam section collector, HyperMesh will set the ID to n+1.

- 4. Click the *Color* icon, and select a new color.
- 5. Set Card Image to SECTYPE.
- 6. Set **TYPE** to **SHELL**.



7. Under SECDATA, for PLIES, enter 1.

| Name        | Value   | - |
|-------------|---------|---|
| Name        | SECT1   |   |
| ID          | 1       |   |
| Color       |         |   |
| Defined     |         |   |
| Card Image  | SECTYPE | = |
| TYPE        | SHELL   |   |
| SECDATA     |         |   |
| PLIES       | 1       |   |
| Data: TK,   |         |   |
| SECOFFSET   |         |   |
| Location    | MID     |   |
| SECCONTROLS |         |   |
| E11         | 0.0     |   |
| E22         | 0.0     |   |
| ====        | <u></u> |   |

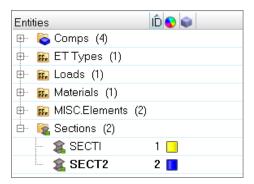
- 8. Under **PLIES**, next to **Data: TK**, click 🔛.
- 9. In the **Plies** dialog, enter 10 for **TK** (ply thickness).
- 10. For **MAT**, click **Unspecified** >> **Material**.

| 🛆 PLIES |                |       | <b>×</b> |
|---------|----------------|-------|----------|
| TK      | MAT            | THETA | NUMPT    |
| 1 10.0  | Material 🔂 📑 🛛 | 0.0   | 3        |
|         | *0             |       |          |
|         |                |       |          |
|         |                |       | Close    |
|         |                |       |          |

11. In the **Select Material** dialog, select **Steel** and then click **OK**.

| 4   | Select Ma   | terial |       |            | ×               |
|-----|-------------|--------|-------|------------|-----------------|
| Ent | er Search S | String |       |            | Q. <del>•</del> |
|     | Name        | Id     | Color | Card Image | Defined         |
| ۲   | Steel       | 1      |       | MATERIAL   |                 |
|     |             |        |       |            |                 |
|     |             |        |       | ОК         | Cancel          |

- 12. For **THETA** (ply angle), keep the default value 0.0.
- 13. For **NUMPT** (Integration points through ply thickness), enter 3.0.
- 14. Click *Close*.




| 🛆 PLIES |           |       | ×     |
|---------|-----------|-------|-------|
| ТК      | MAT       | THETA | NUMPT |
| 1 10.0  | Steel (1) | 0.0   | 3     |
|         |           |       |       |
|         |           |       |       |
|         |           |       | Close |

- 15. In the **Model** browser, **Property** folder, right-click on **SECT1** and select **Duplicate** from the context menu. HyperMesh creates a new property using the same card data as **SECT1**, except a different **Name** and **ID** are specified.
- 16. For Name, enter SECT2.
- 17. Click the **Color** icon, and select a new color.
- 18. Under PLIES, next to Data: TK, click 🔛.
- 19. In the **PLIES** dialog, change the value for **TK** from 10 to 5.
- 20. Leave MAT, THETA, and NUMPT unchanged.
- 21. Click Close.

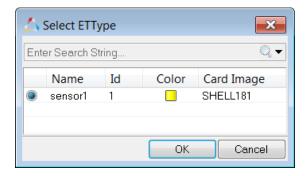
| 🛆 PLIES |           |       | ×     |
|---------|-----------|-------|-------|
| ТК      | MAT       | THETA | NUMPT |
| 1 5.0   | Steel (1) | 0.0   | 3     |
|         |           |       |       |
|         |           |       |       |
|         |           |       | Close |
|         |           |       |       |

22. Go to the **Solver** browser and review the two sections you just created.





# Step 6: Update each component with the respective element type, property, material, and section information


1. In the **Model** browser, **Component** folder, click **Base**. The **Entity Editor** opens and displays the component's corresponding data.

| Entities              | ID 😒 |                             | ^ |
|-----------------------|------|-----------------------------|---|
| 📄 💊 Component (4)     |      |                             |   |
| 🗾 🖪 CERIG             | 1 📕  |                             | = |
| - 🗾 🖽 Base            | 2 🗖  |                             |   |
| 🚽 🖪 Rib               | 3 🗖  |                             |   |
| 🗖 🗗 mass              | 4 🔳  |                             |   |
| <u>і</u> . 🛱 Тана (1) |      |                             |   |
| Name                  |      | Value                       |   |
| Name                  |      | Base                        |   |
| ID                    |      | 2                           |   |
| Color                 |      |                             |   |
| Card Image            |      | HM_COMP                     |   |
| Туре                  |      | <unspecified></unspecified> |   |
| Property              |      | <unspecified></unspecified> |   |
| Material              |      | <unspecified></unspecified> |   |

### 2. For **Type**, click **Unspecified** >> **ETType**.

| 000        |                                          |
|------------|------------------------------------------|
| Card Image | HM_COMP                                  |
| Туре       | ETType 🚬 📑 📢                             |
| Property   | <unspecified> <sup>し</sup></unspecified> |
| Motorial   | d Inappositions                          |

3. In the **Select ETType** dialog, select *sensor1* (SHELL181) and then click *OK*.



- 4. For **Property**, click **Unspecified** >> **Property**.
- 5. In the **Select Property** dialog, select **SECT1** and then click **OK**.

**Note:** You do not have to assign a **Property** or **Material** to this component, because this information is already defined in **SECT1**.



|      | 🛆 Select Property      |              |       |                                  |         |  |  |
|------|------------------------|--------------|-------|----------------------------------|---------|--|--|
| Ente | er Search              | String       |       |                                  | Q -     |  |  |
| 0    | Name<br>SECT1<br>SECT2 | ID<br>1<br>2 | Color | Card Image<br>SECTYPE<br>SECTYPE | Defined |  |  |
|      |                        |              |       | ОК                               | Cancel  |  |  |

- 6. In the **Model** browser, **Component** folder, click *Rib*. The **Entity Editor** opens and displays the component's corresponding data.
- 7. For **Type**, click **Unspecified** >> **ETType**.
- 8. In the **Select ETType** dialog, select *sensor1* (SHELL181) and then click *OK*.
- 9. For **Property**, click **Unspecified** >> **Property**.
- 10. In the **Select Property** dialog, select **SECT2** and then click **OK**.
  - **Note:** You do not have to assign a **Property** or **Material** to this component, because this information is already defined in **SECT2**.

| Value                       |                                                 |
|-----------------------------|-------------------------------------------------|
| Rib                         |                                                 |
| 3                           |                                                 |
|                             |                                                 |
| HM_COMP                     |                                                 |
| sensor1 (1)                 |                                                 |
| SECT2 (2)                   |                                                 |
| <unspecified></unspecified> |                                                 |
|                             | Rib<br>3<br>HM_COMP<br>sensor1 (1)<br>SECT2 (2) |

11. In the **Model** browser, **Component** folder, click *mass*. The **Entity Editor** opens and displays the component's corresponding data.

**Note**: The **mass** component does not currently have a type, property, or material attached to it.

 For Type, click Unspecified >> ETType. You need to attach the element type MASS21 to the mass component. This element type is not available in the Select ETType dialog because it does not exist in the model, therefore you need to create and attach it to the component.

#### MASS21

- A point element that can have up to six degrees of freedom: translations in the nodal x, y, and z directions; rotations about the nodal x, y, and z axes. A different mass and rotary inertia may be assigned to each coordinate direction.
- Defined by a single node, concentrate mass components (Force\*Time<sup>2</sup>/Length) in the element coordinate directions and rotary inertias (Force\*Length\* Time<sup>2</sup>) about the element coordinate axes. The element coordinate system may be initially parallel to the global Cartesian coordinate system or to the nodal coordinate system (KEYOPT(2)). The coordinate system rotates with the nodal coordinate rotations



during a large deflection analysis. Options are available to exclude the rotary inertia effects and to reduce the element to a 2-D capability (KEYOPT(3)). If the element requires only the mass input, it is assumed to act in all appropriate coordinate directions

- 13. Click *Cancel*.
- 14. Right-click on *Type* and select *Create* from the context menu. The **Create Sensors** dialog opens.

| Name      |                                     | Value             | 9         |  |
|-----------|-------------------------------------|-------------------|-----------|--|
| Name      |                                     | mass              | :         |  |
| ID        |                                     | 4                 |           |  |
| Color     |                                     |                   |           |  |
| Card Imag | ge                                  |                   | COMP      |  |
| Туре 🗖    |                                     | ZLInc             | pacified> |  |
| Propert   | Create                              |                   | cified>   |  |
| Materia   | Edit                                | ~8                | cified>   |  |
|           | Show                                |                   |           |  |
|           | Hide                                |                   |           |  |
|           | Isolate                             |                   |           |  |
|           | XRef entities                       |                   |           |  |
| •         | <ul> <li>Filter entities</li> </ul> |                   |           |  |
|           | <ul> <li>Warn upon er</li> </ul>    | ntity type change |           |  |

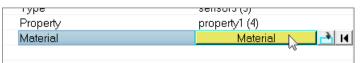
15. Set Element Type to MASS21.

#### 16. Set KeyOpt3 to 3-D mass without rotary inertia.

17. Click *Close*. HyperMesh creates and attaches the new sensor to the **mass** component.

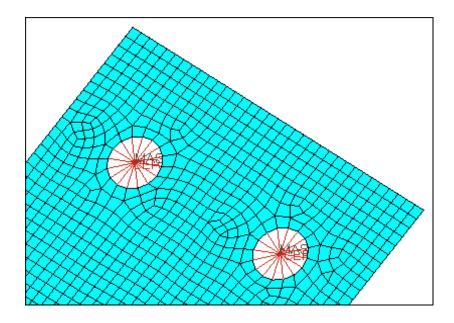
| 💪 Create Sensors | ×                               |
|------------------|---------------------------------|
| Name             | Value                           |
| Name             | sensor2                         |
| ID               | 2                               |
| Color            |                                 |
| Element Type     | MASS21                          |
| KeyOpt1          |                                 |
| KeyOpt2          |                                 |
| 🗏 KeyOpt3        | 3-D mass without rotary inertia |
| value            | 2                               |
| 1                | Close                           |

18. Create a property card that associates a small mass to the mass elements by rightclicking on **Property** and selecting **Create** from the context menu.




| Name      | Value                        |  |
|-----------|------------------------------|--|
| Name      | mass                         |  |
| ID        | 4                            |  |
| Color     | E.                           |  |
| Card Imag | e HM_COMP                    |  |
| Туре      | sensor2 (2)                  |  |
| Property  | 0                            |  |
| Material  | Create                       |  |
|           | Edit                         |  |
|           | Show                         |  |
|           | Hide                         |  |
|           | Isolate Only                 |  |
|           | XRef entities                |  |
|           | ✓ Filter entities            |  |
|           | Warn upon entity type change |  |

- 19. In the **Create Properties** dialog, the **Card Image** is automatically set to **MASS21p** because the element type attached to the **mass** component is **MASS21**.
- 20. Set KeyOpt3 to 3-D mass without rotary inertia.
- 21. Under Real Constants, enter 0.001 for MASS.
- 22. Click *Close*. HyperMesh creates and attaches the new property to the **mass** component.


| 💪 Create Properties |                                 |  |  |
|---------------------|---------------------------------|--|--|
| Name                | Value                           |  |  |
| Name                | property1                       |  |  |
| ID                  | 4                               |  |  |
| Color               |                                 |  |  |
| Defined Entity      |                                 |  |  |
| Card Image          | MASS21p                         |  |  |
| kopt3               | 3-D mass without rotary inertia |  |  |
| 🖃 Real Constants    |                                 |  |  |
| MASS                | 0.001                           |  |  |
|                     |                                 |  |  |
|                     | Close                           |  |  |

23. For Material, click *Unspecified* >> *Material*.



- 24. In the Select Material dialog, select Steel and then click OK.
- 25. The component **CERIG** contains ANSYS rigid elements. These elements define the rigid region and do not require an element type, property, or material, therefore you do not have to assign a card to this component.





## Step 7: Save your model

- 1. From the menu bar, click *File* > *Save As* > *Model*.
- 2. In the **Save Model As** dialog, navigate to your working directory and save the file.
- 3. To apply boundary conditions and create load steps for your model, proceed to **Exercise 2**.

## **Exercise 2**

## **Introduction to ANSYS Load Steps**

This exercise introduces the concept of ANSYS load steps in HyperMesh. In HyperMesh, you need to have each load or constraints in a separate load collector (load cols). With the help of these load collectors, you can create multiple load steps depending on the requirement. The combination of loads with constraints, form a load step. If you have created load steps in your model, the exported \*.cdb file will have all of the load step information. This \*.cdb file when imported into ANSYS, automatically creates the \*.so files in the working directory which can be used later if needed.

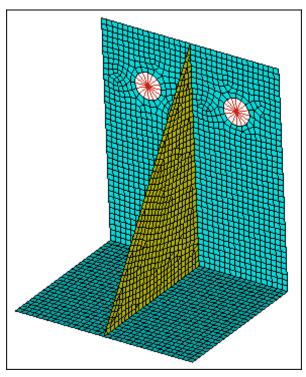
In this tutorial, you will learn how to:

- Load the ANSYS user profile.
- Retrieve the HyperMesh model file for this tutorial.
- Create constraint load collectors.
- Apply the constraints to the model.
- Apply the force on mass elements with force1 load collector.
- Apply the force on mass elements with force2 load collector.
- Apply the force on mass elements with force3 load collector.



- Create multiple load steps.
- Add /SOLU & LSSOLVE in control cards
- Export the deck to ANSYS \*.cdb format

## **Optional - Step 1: Load the ANSYS user profile**


You only need to perform this step, if you did not complete Exercise 1.

- 1. Start HyperMesh.
- 2. In the **User Profile** dialog, set the user profile to **Ansys**.

## **Optional - Step 2: Retrieve the HyperMesh model file**

You only need to perform this step, if you did not complete Exercise 1.

- 1. From the menu bar, click *File* > *Open* > *Model*.
- 2. In the **Open Model** dialog, open the <code>chapter2\_2.hm</code> file.
- 3. If you model's elements and mesh lines are not shaded, click  $\widehat{\Psi}$  on the **Visualization** toolbar.



# Step 3: Create a constraints load collector

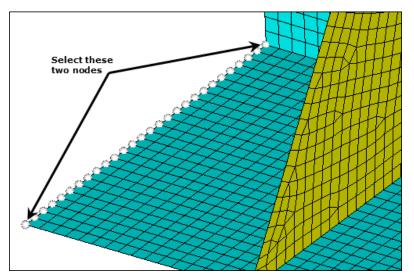
- 1. In the **Model** browser, right-click and select *Create* > *Load Collector* from the context menu. HyperMesh creates and opens a load collector in the **Entity Editor**.
- 2. For Name, enter constraints.



- 3. Click the *Color* icon, and select a new color for the load collector.
- 4. Create three more load collectors labeled **force1**, **force2**, and **force3**.

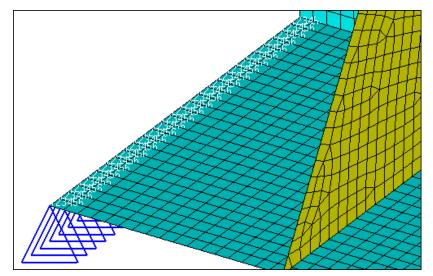
| Entities                       | ID |  |
|--------------------------------|----|--|
| 🕀 🌆 Material (1)               |    |  |
| 🕀 🍓 Beam Section Collector (2) |    |  |
| 🕀 😂 Property (1)               |    |  |
| 🖻 辑 Load Collector (4)         |    |  |
| 📁 🗾 🖽 constraints              | 1  |  |
| 🗂 🗾 🖽 force1                   | 2  |  |
| 🗂 🗾 🖽 force2                   | 3  |  |
| 🗖 🗗 force3                     | 4  |  |

## Step 4: Apply the constraints to the model

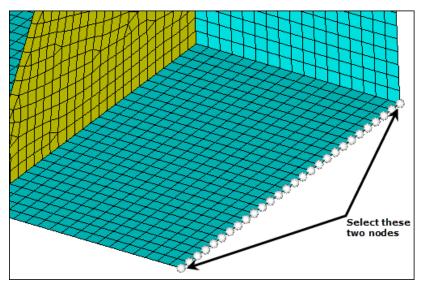

1. In the **Model** browser, **Load Collector** folder, right-click on **constraints** and select **Make Current** from the context menu.

Note: When new loads are created, Hypermesh will place them in this collector.

- 2. Open the **Constraints** panel by clicking **BCs** > **Create** > **Constraints** from the menu bar.
- 3. Select all of the *dof* (degree of freedom) checkboxes.

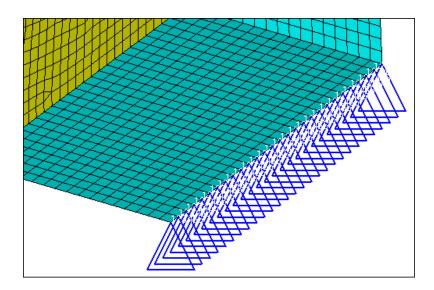

| create   | ▼ nodes I         | 🔽 dof1    | =    | 0.000      | create      |
|----------|-------------------|-----------|------|------------|-------------|
| C update |                   | 🔽 dof2    | =    | 0.000      | create/edit |
|          | size = 10.000     | 🔽 dof3    | =    | 0.000      | reject      |
|          | label constraints | 🔽 dof4    | =    | 0.000      | review      |
|          |                   | 🔽 dof5    | =    | 0.000      |             |
|          | ♦ constant value  | 🔽 dof6    | =    | 0.000      |             |
|          |                   | load type | 3S = | D_CONSTRNT | return      |

- 4. Click *nodes* >> *by path*.
- 5. Select a starting node and an end node on the left side of the model as indicated in the following image.

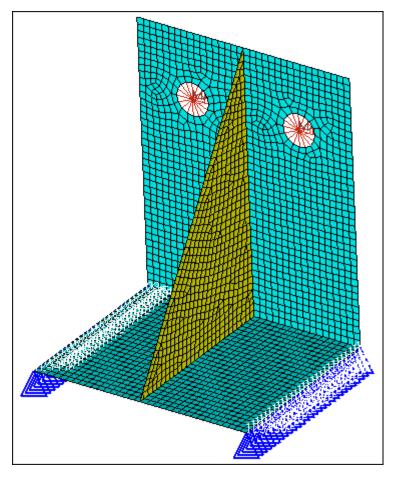





6. Click *create*.



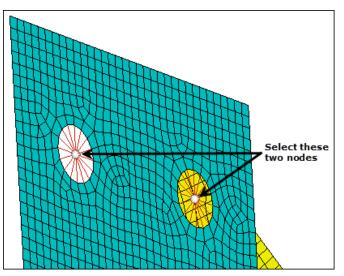

7. Repeat steps 4.4 and 4.5 to select a starting node and an end node on the right side of the model as indicated in the following image.



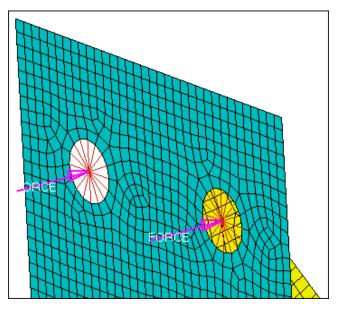

8. Click *create*.





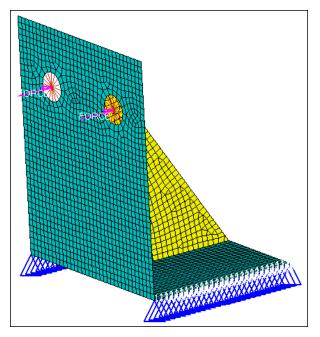

9. Click *return* to exit the **Constraints** panel.





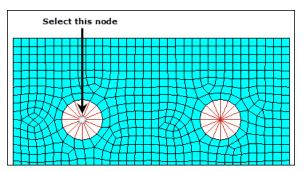

# **Step 5: Apply the force on mass elements with the force1 load collector**

- 1. In the **Model** browser, **Load Collector** folder, right-click on **force1** and select **Make** *Current* from the context menu.
- 2. Open the **Forces** panel by clicking **BCs** > **Create** > **Forces** from the menu bar.
- 3. Verify that the entity selector is set to *nodes*.
- 4. Select the two nodes in the center of the two bolt holes as indicated in the following image.



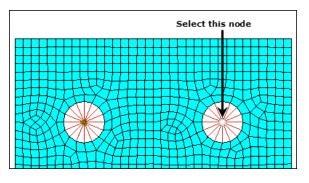

- 5. In the **magnitude**= field, enter 500.
- 6. Set the orientation selector to **z-axis** for the direction of application of the force.
- 7. In the **uniform size=** field, enter 20.
- 8. Click *create*.



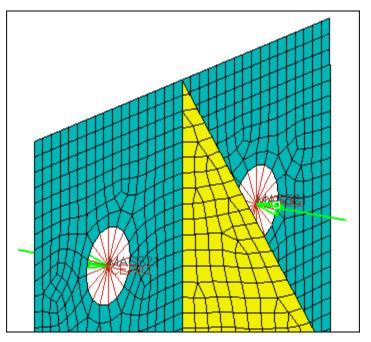



9. Click *return* to exit the **Forces** panel.




# **Step 6: Apply the force on mass elements with the force2 load collector**

- 1. In the **Model** browser, **Load Collector** folder, right-click on **force2** and select **Make** *Current* from the context menu.
- 2. For better visualization, press **F5** to open the **Mask** panel.
- 3. Set the entity selector to *loads*.
- 4. Select the two forces you created in step 5.8.
- 5. Click *mask*.
- 6. Click *return*.
- 7. Open the **Forces** panel.
- 8. Verify that the entity selector is set to *nodes*.
- 9. On the **Standard Views** toolbar, click  $\coprod$ .
- 10. Select the left side node in the center of the bolt hole as indicated in the following image.



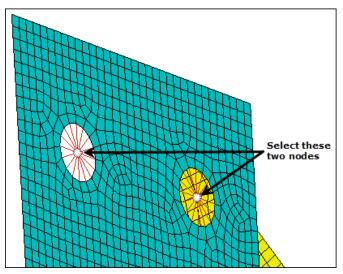



- 11. In the **magnitude=** field, enter 500.
- 12. Set the orientation selector to **z-axis** for the direction of application of the force.
- 13. Click *create*.
- 14. Select the right side node in the center of the bolt hole as indicated in the following image.

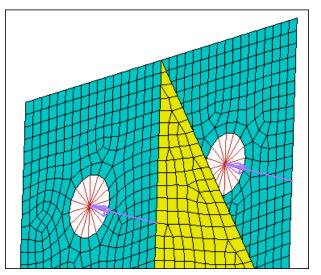


- 15. In the **magnitude=** field, enter -500.
- 16. Set the orientation selector to **z-axis** for the direction of application of the force.
- 17. Click *create*.



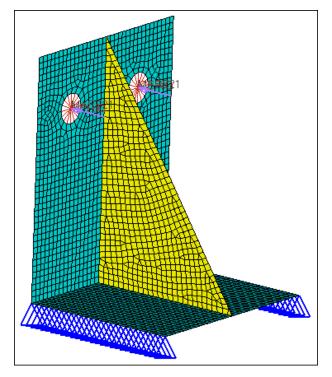

18. Click *return* to exit the Forces panel.

# **Step 7: Apply the force on mass elements with the force3 load collector**


1. In the **Model** browser, **Load Collector** folder, right-click on **force3** and select **Make** *Current* from the context menu.



- 2. Open the **Mask** panel.
- 3. Verify that the entity selector is set to **loads**.
- 4. Select the two forces you created in steps 6.13 and 6.17.
- 5. Click *mask*.
- 6. Click *return*.
- 7. Open the *Forces* panel.
- 8. Verify that the entity selector is set to *nodes*.
- 9. Select the two nodes in the center of the two bolt holes as indicated in the following image.




- 10. In the magnitude= field, enter -500.
- 11. Set the orientation selector to **z-axis** for the direction of application of the force.
- 12. Click *create*.





13. Click *return* to exit the **Forces** panel.



## Step 8: Create multiple load steps

1. In the **Model** browser, right-click and select *Create* > *Load Step* from the context menu. HyperMesh creates and opens a load step in the **Entity Editor**.

| Entities               | ID 😒          | * |
|------------------------|---------------|---|
| 🕀 😂 Property (1)       |               |   |
| 🖽 👫 Load Collector (4) |               |   |
| 🖹 📬 Load Step (1)      |               | = |
| 📥 👍 loadstep1          | 1             |   |
|                        |               |   |
| Name                   | Value         |   |
| Name                   | loadstep1     |   |
| ID                     | 1             |   |
| Card Image             | <none></none> |   |
| Loadcol IDs            | 0 Loadcols    |   |
| /TITLE                 |               |   |
| ACEL                   |               |   |
| CECMOD                 |               |   |
|                        |               |   |

- 2. For Name, enter Step1.
- 3. For Loadcol IDs, click *0 Loadcols* >> Loadcols.

| Card Image  | <none></none>  |
|-------------|----------------|
| Loadcol IDs | Loadcols 🔂 📑 📢 |
| /TITLE      |                |
|             |                |



4. In the **Select Loadcols** dialog, select *constraints* and *force1*.

| 🛃 Select Loadcols |                 |    | <b>×</b>        |
|-------------------|-----------------|----|-----------------|
| Ent               | er Search Strir | ig | Q, <del>•</del> |
|                   | Name            | Id | Color           |
|                   | constraints     | 1  |                 |
|                   | force1          | 2  |                 |
|                   | force2          | 3  |                 |
|                   | force3          | 4  |                 |
|                   |                 |    | 2 selected.     |
|                   |                 | ОК | Cancel          |

- 5. Click **OK**.
- 6. Create a second load step labeled **Step2**, and assign it the load collectors **constraint** and **force2**.
- 7. Create a third load step labeled **Step3**, and assign it the load collectors **constraint** and **force3**.
- 8. In the **Model** browser, review the **Load Collectors** and **Load Steps** you created.

| Entities               | ID 😒 |  |
|------------------------|------|--|
| 🗐 👫 Load Collector (4) |      |  |
| 🚽 🗗 constraints        | 1 🗖  |  |
| 🚽 🗗 force1             | 2 🗖  |  |
| 🚽 🗗 force2             | 3 🗖  |  |
| 🚽 🗗 force3             | 4 🔲  |  |
| 🖹 🔂 Load Step (3)      |      |  |
| 🚽 📥 Step1              | 1    |  |
| 🚽 📥 Step2              | 2    |  |
| 🗆 📥 Step3              | 3    |  |

- Open the Solver browser by clicking View > Browsers > HyperMesh > Solver from the menu bar.
- 10. Review the Load Collectors and Load Steps you created.

## Step 9: Add /SOLU, ANTYPE, and LSSOLVE in the control cards

- Open the **Control Cards** panel by clicking *Setup* > *Create* > *Control Cards* from the menu bar.
- 2. In the **Card Image**, click **/SOLU** to exit the **PREP7 preprocessor** and enter the **SOLU preprocessor**.



| -             |          |        |        |        |        |
|---------------|----------|--------|--------|--------|--------|
|               | LUMPM    | MODOPT | OUTRES | ETABLE | AUTOTS |
|               | ACEL     | MXPAND | /POST1 | KBC    | /BATCH |
|               | CGLOC    | EQSLV  | PRESOL | LNSRCH | BFUNIF |
| $\rightarrow$ | CGOMGA   | ALPHAD | RSYS   | MODE   | /COM   |
|               | CMDOMEGA | BETAD  | /SOLU  | NEQIT  | CNVTOL |
|               | CMOMEGA  | PSTRES | SOLU   | NLGEOM | DELTIM |
|               | DCGOMG   | EXPASS | ANTYPE | NSUBST | DOF    |
| 1             |          |        |        |        |        |

```
! Exit PREP7 processor
FINISH
! Enter SOLU processor
/SOLU
```

#### 3. Click *return*.

4. Because you are solving the model for static analysis, click **ANTYPE**.

| AUTOTS | ETABLE | OUTRES | MODOPT | LUMPM    |
|--------|--------|--------|--------|----------|
| /BATCH | KBC    | /POST1 | MXPAND | ACEL     |
| BFUNIF | LNSRCH | PRESOL | EQSLV  | CGLOC    |
| /COM   | MODE   | RSYS   | ALPHAD | CGOMGA   |
| CNVTOL | NEQIT  | /SOLU  | BETAD  | CMDOMEGA |
| DELTIM | NLGEOM | SOLU   | PSTRES | CMOMEGA  |
| DOF    | NSUBST | ANTYPE | EXPASS | DCGOMG   |

### 5. Set **type** to **STATIC** and **status** to **NEW**.



## 6. Click *return*.

#### 7. Click *LSSOLVE*.

Tip: If you do not see the **LSSOLVE** control card, click *next*.

| SUBOPT     | SOLVE         | UNSU_PREP_END   |  |
|------------|---------------|-----------------|--|
| EMUNIT     | LSSOLVE       | MXPAND ACEL     |  |
| EORIENT    | STEF SOL      | EQSLV CGLOC     |  |
| UNSU_PREP7 | HEMIOPT       | ALPHAD CODMCA   |  |
| UNSU_END   | RADOPT        | BETAD CMDDMEGA  |  |
| UNITS IN   | SPCTEMP       | PSTRES CMOMEGAN |  |
| NUMOFF     | UNSU_PREP_MID | EXPASS DCD.0MG  |  |

- 8. Set the minimum number of load steps by entering 1 in the **LSMIN** field.
- 9. Set the maximum number of load steps by entering 3 in the LSMAX field.



10. Set the load step increment by entering 1 in the  $\ensuremath{\text{LSINC}}$  field.

| LSSOLVE 1 SSOLVE 1               |                   |
|----------------------------------|-------------------|
| User Comments<br>▼ Do Not Export | reject<br>default |
|                                  | abort<br>return   |

This card image commands the solver to solve all three load steps.

- 11. Click *return* to exit the card image.
- 12. Click *return* to exit the **Control Cards** panel.

## Step 10: Export the deck to ANSYS \*.cdb format.

- 1. Open the **Export** tab by clicking *File* > *Export* > *Solver Deck* from the menu bar.
- 2. Set File type to Ansys.
  - **Note:** If you are in the **ANSYS** user profile, HyperMesh automatically sets the **File type** to Ansys and loads ANSYS as the default **Template**.
- 3. In the **File** field, navigate to your working directory and save the file as 4410\_export.cdb.
- 4. Click *Export*.

