

altairhyperworks.com

HM-4200: Setting Up Nastran Static Analysis in HyperMesh

In this tutorial, you will learn how to:

- Define a model in HyperMesh
- Apply boundary conditions in HyperMesh
- Write the Nastran input deck
- View the results

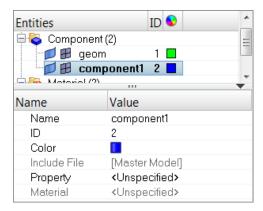
You will use the HyperMesh Nastran interface to create finite elements on the geometry of a plate with a hole, apply boundary conditions, and perform finite element analysis.

Model Files

This tutorial uses the plate_hole.hm file, which can be found in <hm.zip>/interfaces/nastran/. Copy the file(s) from this directory to your working directory.

Exercise

Step 1: Retrieve the model file and select the Nastran user profile


- 1. Start HyperMesh Desktop.
- 2. In the **User Profile** dialog, set the user profile to **Nastran**.
- 3. Open a model file by clicking *File* > *Open* > *Model* from the menu bar, or clicking so the **Standard** toolbar.
- 4. In the **Open Model** dialog, open the plate_hole.hm file.

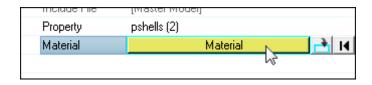
Step 2: Create material collectors and components

1. In the **Model** browser, right-click and select *Create* > *Material* from the context menu. A new material opens in the **Entity Editor**.

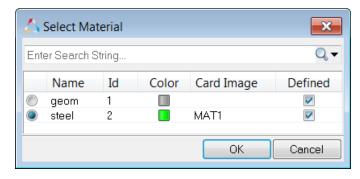
Entities	ID 🔍 🖍
🖨 🍖 Material (2)	
📲 😰 geom	1 🗖 😑
🛛 🌋 material1	2 🗖
іі. 🚘 тана /1)	
Name	Value
Solver Keyword	MAT1
Name	material1
ID	2
Color	
Include File	[Master Model]
Defined Entity	
Card Image	MAT1
User Comments	Hide In Menu/Export
E	

- 2. For Name, enter steel.
- 3. Set Card Image to MAT1.
- 4. For E, enter 2e5.
- 5. For NU, enter 0.30.
- 6. For **RHO**, enter any number (if needed).
- 7. In the **Model** browser, right-click and select *Create* > *Component* from the context menu. A new component opens in the **Entity Editor**.

- 8. For Name, enter shells.
- 9. Right-click on **Property** and select **Create** from the context menu.


Name	Value
Name	shells
ID	2
Color	
Include F	ile [Master Model]
Property Material	Create
	Edit
	Show
	Hide
	Isolate
	XRef entities
	Filter entitiesWarn upon entity type change

10. In the Create Properties dialog, Name field, enter pshells.


Name	Value	Ê
Solver Keyword	PSHELL	
Name	pshells	
ID	2	
Color		
Include File	[Master Model]	_
Defined Entity		_
Card Image	PSHELL	
Material	<unspecified></unspecified>	
User Comments	Hide In Menu/Export	=
MID1_blank		
Т		
MID2_opts		- 11
I12_T3		
MID3_opts		
TS_T		
NSM		
Z1		
Z2		
MID4		
PSHLN1		-

- 11. Set Card Image to PSHELL.
- 12. For **T** (thickness), enter 1.0.
- 13. Click *Close*. HyperMesh assigns the property **pshells** to the component **shells**.
- 14. For Material, click *Unspecified* >> *Material*.

15. In the **Select Material** dialog, select **steel** and then click **OK**. HyperMesh assigns the material **steel** to the component **shells**.

Step 3: Mesh the geometry

Use the **Automeshing** panel to mesh interactively on surfaces. This panel contains tools for manipulating surface edges and meshing fixed points (locations where the mesher is required to place a node.) The elements generated are organized into the current component and shells.

- 1. Open the **Automesh** panel by pressing **F12**.
- 2. Go to the **size and bias** subpanel.
- 3. Click *surfs* >> *displayed*.
- 4. In the **element size** field, enter 40.
- 5. Set the **elems to surf comp/elems to current comp** toggle to **elems to current** *comp*.
- 6. Click *mesh*. HyperMesh meshes the selected surfaces, and the meshing module opens.

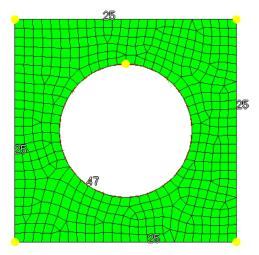
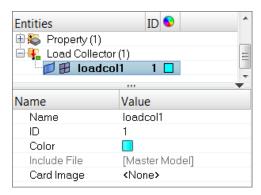


Plate mesh using element size of 40mm

- 7. Accept the mesh in the **shells** component by clicking *return*.
- 8. Close the **Automesh** panel by clicking *return*.

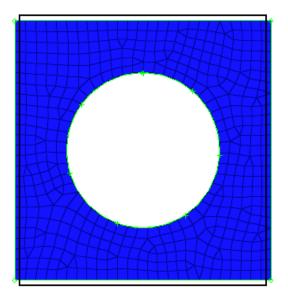

Steps 4-6: Apply boundary conditions to the model

In this section, the model is constrained so that two of the four edges cannot move. A total lateral load of 1000N is applied at the edge of the hole so that all forces point in the positive z-direction.

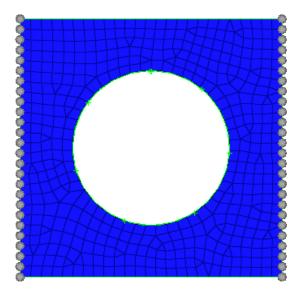
Step 4: Create collectors

Before creating boundary condition and loads, load collectors are created first. These load collectors are used for boundary conditions and loads.

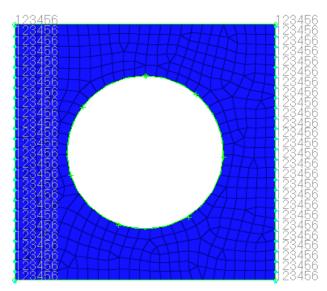
1. In the **Model** browser, right-click and select *Create* > *Load Collector* from the context menu. A new load collector opens in the **Entity Editor**.


- 2. For Name, enter spcs.
- 3. Click the *Color* icon and select a color to display the load collector.
- 4. Create a second load collector labeled, **forces**.

Step 5: Create constraints

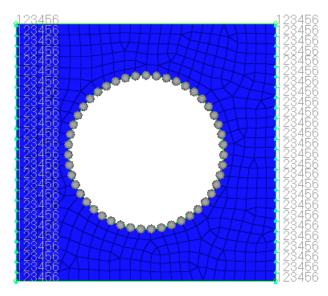

- 1. In the **Model** browser, **Load Collector** folder, right-click on *spcs* and select *Make Current* from the context menu.
- 2. Open the **Constraints** panel by clicking **BCs** > **Create** > **Constraints** from the menu bar.
- 3. Go to the *create* subpanel.
- 4. Set the entity selector to *nodes*.
- 5. Click *nodes* >> *by window*.
- 6. Select the *exterior* checkbox.
- 7. With the exception of the nodes at the ends, draw a box around all of the displayed nodes.

8. Click *select entities*. HyperMesh selects all of the nodes outside of the window you drew.



- 9. Select all of the *dof* (degree of freedom) checkboxes.
 - **Note**: Dofs that are checked are constrained. Dofs 1, 2, and 3 are x, y, and z translation degrees of freedom, and dofs 4, 5, and 6 are x, y, and z rotational degrees of freedom.

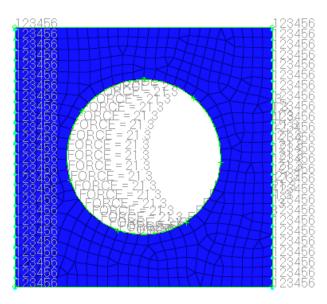
🔽 dof1	=	0.000
🔽 dof2	=	0.000
🔽 dof3	=	0.000
🔽 dof4	=	0.000
🔽 dof5	=	0.000
🔽 dof6	=	0.000


10. Apply these constraints to the selected nodes by clicking *create*.

11. Click *return*.

Step 6: Create forces on the nodes around the hole

- 1. In the **Model** browser, **Load Collector** folder, right-click on **forces** and select **Make** *Current* from the context menu.
- 2. Open the **Forces** panel by clicking **BCs** > **Create** > **Forces** from the menu bar.
- 3. Click *nodes* >> *by path*.
- 4. Select all of the nodes around the hole of the model.


- 5. Click *nodes* >> *save*.
- 6. Click *return*.

- 7. Open the **Count** panel by going to the **Tool** page and clicking *count*.
- 8. Go to the **FE entities** subpanel.
 - **Note:** Nodes are automatically counted so that a calculation can be made to create a total force of 1000N.
- 9. Set the entity selector to *nodes*.
- 10. Retrieve the nodes you saved in the **Forces** panel by clicking *nodes* >> *retrieve*.
- 11. Click *selected*. HyperMesh counts the number of nodes around the hole.
- 12. Click *return*.
- 13. Open the ${\it Forces}$ panel.
- 14. Click *nodes* >> *retrieve*.
- 15. In the **magnitude =** field, enter 21.277 (this is 1000/47).

Note: The total load on the nodes around the hole is 1000N.

- 16. Set the orientation selector to *z-axis*.
- 17. Click *create*.

18. Click *return*.

Steps 7-8: Create a Nastran subcase (a load step in HyperMesh)

Step 7: Create the loadstep

 In the Model browser, right-click and select *Create* > *Loadstep* from the context menu. A new loadstep opens in the **Entity Editor**.

Entities	ID			٠
🖻 🔂 Load Step (1)				
👍 loadstep1	1			Η
				ò
Name			Value	
Solver Keyword			SUBCASE	
Name			loadstep1	
ID			1	
Include File			[Master Model]	
User Comments			Hide In Menu/Export	
Subcase Definition				
🗆 Analysis type			Generic	
SPC			<unspecified></unspecified>	
LOAD			<unspecified></unspecified>	
NONLINEAR			<unspecified></unspecified>	
MPC			<unspecified></unspecified>	

- 2. For Name, enter lateral force.
- 3. For **SPC**, click *Unspecified* >> *Loadcol*.

Jancase Demilion		
🖃 Analysis type	Generic	
SPC	Loadcol	
LOAD	<unspecified></unspecified>	15
NDC	al formation and the	

4. In the **Select Loadcol** dialog, select *spcs* and then click **OK**.

Δ	Select Load	col		×
				Q, •
	Name	Id	Color	Card Image
۲	spcs	1		
	forces	2		
			0	K Cancel

- 5. For **LOAD**, click *Unspecified* >> *Loadcol*.
- 6. In the **Select Loadcol** dialog, select *forces* and then click **OK**.
- 7. Under **SUBCASE OPTIONS**, select the **OUTPUT** checkbox.
- 8. Under **OUTPUT**, select the **DISPLACEMENT** checkbox.
- 9. Under **OUTPUT**, select the **STRESS** checkbox.

Step 8: Create control cards

- 1. From the menu bar, click **Setup** > **Create** > **Control Cards**.
- 2. In the **Card Image** panel, click **SOL**.

DIAG	SET	BULK_UNSUPPORTED_CARDS
ID	PARAM	INCLUDE_EXEC
SOL	MAXLINES	INCLUDE_CTRL
TIME	ACMODL	INCLUDE_BULK
TITLE	OMIT	GLOBAL_CASE_CONTROL
SUBTITLE	EXEC_UNSUPPORTED_CARDS	GLOBAL_OUTPUT_REQUEST
LABEL	CASE_UNSUPPORTED_CARDS	GRDSET

3. Set *Analysis* to *Statics*.

SOL 101	
User Comments	reject
✓ Hide In Menu/Export	default
Analysis ▼ Statics	
	abort return

- 4. Click *return*.
- 5. Click **PARAM**.
- 6. Select the **AUTOSPC** and **POST** checkboxes.
- 7. In the card edit field, click **POST_V1** and enter -2 in the editable field.

Note: This option specifies that an op2 file should be created.

V1	
PARAM, AUTOSPC, YES	
PARAM, POST,	
	reject
	default
POST	abort
	return

8. Click *return* twice.

Steps 9-10: Write the Nastran input deck

In this section, write the **Nastran** input deck file, specified with the .dat extension, before running Nastran.

Step 9: Write your file

1. From the menu bar, click *File* > *Export* > *Solver Deck*. The Export - Solver Deck tab opens.

- 2. Set File type to *Nastran*.
- 3. In the **File** field, navigate to your working directory an save the file as plate_hole.dat.
- 4. Click *Export*. HyperMesh writes your HyperMesh database as a Nastran ASCII input deck.
- 5. Click *Close*.

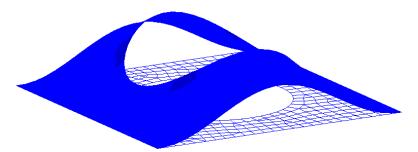
Step 10: Save your file and exit HyperMesh

- 1. From the menu bar, click *File* > *Save As* > *Model*.
- 2. In the **Save Model As** dialog, navigate to your working directory and save the file as plate_hole_new.hm.

Steps 11-14: View the results

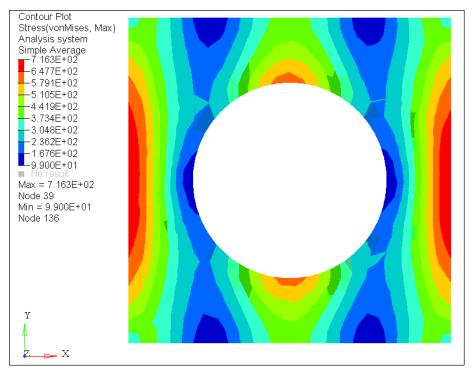
After running Nastran, the punch file <code>plate_hole.op2</code> is created. This file contains displacement and stress results for your linear static analysis. This section describes how to view those results in HyperMesh.

Step 11: Add a HyperView page to the session and load the fem and op2 files


- 1. On the Page Controls toolbar, click 1
- 2. Set the **Client Selector** toolbar to **HyperView**.
- 3. From the menu bar, click *File > Open > Model*. The Load Model panel opens.
- 4. In the **Load model** field, navigate to your working directory and open the plate_hold.dat file.
- 5. In the **Load results** field, navigate to your working directory and open the plate_hold.op2 file.
- 6. Click *Apply*. HyperView loads the model and results.

Step 12: View a deformed shape

- Open the **Deformed** panel by clicking **Results** > **Plot** > **Deformed** from the menu bar.
- 2. Set **Result type** to *Displacement*.
- 3. Set Scale to *Model units*.
- 4. Set **Type** to **Uniform**.
- 5. For Value enter 25.
- 6. Under **Undeformed shape**, set **Show** to **Wireframe**.



7. View a deformed plot of your model overlaid on the original, undeformed mesh by clicking *Apply*.

Step 13: View a contour plot of stresses and displacements

- 1. Open the **Contour** panel by clicking *Results* > *Plot* > *Contour* from the menu bar.
- 2. Set **Result type** to *Displacement (v)*.
- 3. On the **Standard Views** toolbar, click \coprod .
- 4. Click **Apply**.
- 5. Set **Result type** to *Stress (t)*.
- 6. Set Averaging method to *Simple*.
- 7. Click Apply.

