

Altair HyperMesh 2019 Tutorials

HM-3420: Creating Bolt Connectors

HM-3420: Creating Bolt Connectors

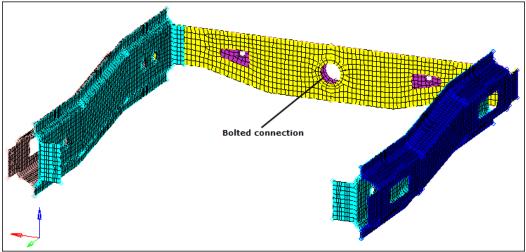
In this tutorial, you will learn how to apply a bolted connection to two rear trusses.

Model Files

This exercise uses the frame_assembly_2.hm file, which can be found in the hm.zip file. Copy the file(s) from this directory to your working directory.

Exercise

The **Bolt** panel creates connectors based on holes within the connected components, using spiders or washers at each end of an RBE connector. When the **Bolt** panel is active, only bolt-type connectors display in the graphics area; graphics for other connector types are suppressed until you exit the panel. The **Bolt** panel contains three subpanels:


- bolt Create and realize bolt connectors in a single process.
- **create** Create, but not realize, bolt connectors.
- **realize** Create FE representations of previously-created bolt connectors.

Step 1: Retrieve and view the model file.

- Start HyperMesh Desktop.
- 2. In the **User Profile** dialog, select **OptiStruct**.
- 3. Click **OK**.
- 4. Open a model file by clicking *File* > *Open* > *Model* from the menu bar, or clicking on the **Standard** toolbar.
- 5. In the **Open Model** dialog, open the frame_assembly_2.hm file. A model appears in the graphics area.

Observe the model using various visualization options available in HyperMesh (rotation, zooming, and so on).

Create a bolted connection between the two rear truss parts.

Step 2: Display only the assembly assem_5 for elements and geometry.

- 1. In the **Model** browser, click (**Model View**).
- 2. Expand the **Assembly Hierarchy** folder and sub-folders.
- 3. Set the entity selection to (Elements and Geometry).

Note: This options turns on/off both elements and geometry when you perform right-click operations in the **Model** browser.

- 4. Right-click on **assem_5** and select **Isolate** from the context menu. HyperMesh only displays the components that are in the **assem_5** assembly.
- 5. Right-click on the **Con_Rear_Truss** component and select **Make Current** from the context menu.

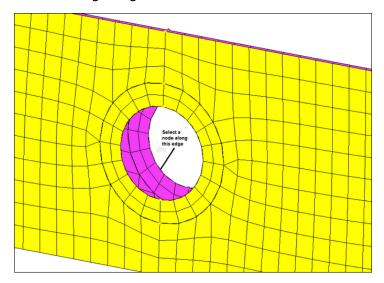
Step 3: Load the Connector Browser.

- Open the Connectors browser by clicking View > Browsers > HyperMesh > Connector from the menu bar.
- 2. Review the layout of the **Connector** browser. Currently there are no components or connectors listed because there are no connectors in the model.

Note: You can use the **Connector** browser to view and manage the connectors in your model. The top portion of the browser is referred to as the **Link Entity** browser, and it displays information about the linked entities in your model. The middle portion is referred to as the **Connector Entity** browser, and it contains a list of the connectors in your model. The bottom portion of the browser is referred to as the **Connector Entity Editor**, and it displays

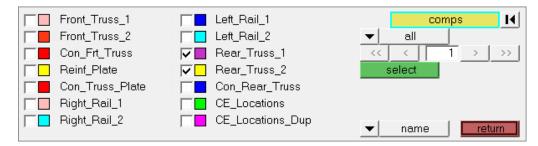
Enter Search String...

Connector Entity Browser


Name Value

Connector Entity Editor

attributes assigned to the connector(s) selected in the Connector Entity browser. HyperMesh groups the connectors based on their connection type.


Step 4: Create a bolt connector.

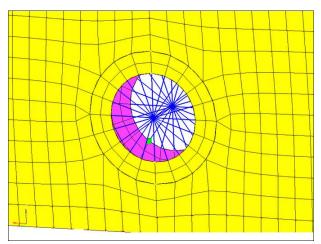
- 1. Open the **Bolt** panel by right-clicking in the **Connector Entity** browser and selecting **Create** > **Bolt** from the context menu.
- 2. Set the **location** selector to **nodes**.
- 3. Select a node on the edge of the hole in the **Rear_Truss_1** component as indicated in the following image.

- 4. Set the **connect what** selector to **comps**.
- 5. Click comps.
- 6. Select the components, *Rear_Truss_1* and *Rear_Truss_2*.

- 7. Click **select**.
- 8. In the **tolerance**= field, enter 50.

Note: The connector will connect any selected entities within this distance of itself.

9. Click **type=** and select **bolt (general)**.


Note: Re-realizing the connector will allow you to see the different bolt types.

- 10. Click realize & hole detect details.
- 11. In the **max dimension** = field, enter 60 to ensure that the diameter of the picked hole will be captured.
- 12. Click return.

13. Click create.

Note: Ensure the display of the current component is turned on.

Bolted connection

14. To access the main menu, click *return*.