

Altair HyperGraph 2D 2019 Tutorials

HG-3010: Working with Complex Plots

altairhyperworks.com

HG-3010: Working with Complex Plots

In this tutorial you will learn how to:

- Create complex plots from a data file
- Add and edit complex data curves by using mathematical functions

Tools

The **Build Plots** panel can be accessed in one of the following ways:

• Click the **Build Plots** icon ^{*} from the toolbar

Or

• From the menu bar select *Curves > Build Plots*

The **Build Plots** panel constructs multiple curves and plots from a single data file. Curves can be overlaid in a single window or each curve can be assigned to a new window. Individual curves are edited using the **Define Curves** panel.

Data file: 📑 🖻	۶.					-	Apply
Subcase:	÷	▼ YType: <u>11 17 1</u> Filter:	YRequest <u>t⊨ µ≓ t≡</u> Filter:		Y Component <u>ti≟ ↓</u> ⊊ <u>ti≣ </u> F	filter:	
X Type:	÷	•					
X Request	•						
X Component:	÷	-					
Layout:	Use current plot	···	All None	e Flip …	All None	Flip	

The **Define Curves** panel can be accessed in one of the following ways:

• Click the **Define Curves** panel icon, \checkmark , from the toolbar

Or

• From the menu bar select *Curves > Define Curves*

Existing curves can be edited individually, and new curves can be added to the current plot using the **Define Curves** panel. The **Define Curves** panel also provides access to the program's curve calculator.

Curve: Curve 1	(• x=	Apply
Curve 1	C yp =	
	C ym =	
	Source: File:	*
	• File Type:	•
	C Math Node:	•
Cut Copy Paste Add P/M Add R/I	C Values Channels:	•

Exercise: Plot Complex Data and Apply Math Functions

Step 1: Build a complex data curve from a data file.

- 1. From the menu bar select *File > New > Session* to clear the contents of the session.
- 2. From the plot type menu, select **Complex Plot**, \overleftrightarrow .
- 3. Enter the **Build Plots** panel,
- 4. Use the file browser button to open the <code>control_arm_soll11.pch</code> file, located in the plotting folder.
- 5. Leave the X type: set to Frequency [hz].
- 6. In the **Y type:** column, select **Subcase 1 Displacements**.
- 7. In the Y Request: column, select Point id 2086.
- 8. In the Y Component: column, select X-Rot.
- 9. Click *Apply* to create the complex curves.

Step 2: Apply the Inverse Fast Fourier Transform (ifft) math function to the complex data curve.

- 1. Change the current window layout of page 1 to a two-window layout \square .
- Activate the window on the right side.
 New plot windows are set to the xy plot type by default.
- 3. Set the plot type for the window on the right side to *XY Plot*.
- 4. Enter the **Define Curves** panel, 💙.
- 5. Add a new XY plot curve named Curve 1.
- 6. Rename Curve 1 to ifft_curve.
- 7. Under Source, select Math.
- 8. In the **x:** field, enter plwlcl.x.
- 9. In the y: field, enter ifft(plwlcl.ym,plwlcl.yp).
- 10. Click **Apply** to create the XY data curve.

Step 3: Create a complex data curve of frequency versus displacement for Subcase two, node 2086, x-rotation.

- 1. Activate window 1 (the left window).
- 2. Enter the **Build Plots** panel $\stackrel{\text{\tiny 61}}{=}$.
- 3. In the Y type: column, select Subcase 2 Displacements.
- 4. In the Y Request: column, select Point id 2086.
- 5. In the Y Component: column, select X-Rot.
- 6. Click **Apply** to create the complex curves.

Step 4: Subtract the Subcase two curve from the Subcase one curve.

- 1. Change the current window layout for page 1 to a three-window layout, \square .
- 2. Make the new, blank plot window active.
- 3. From the plot type menu, select *Complex Plot*.
- 4. Enter the **Define Curves** panel.
- 5. Click **Add P/M** to create a new complex curve.
- 6. Rename Curve 1 to sub_disp.
- 7. Under Source, select Math.
- 8. In the **x:** field, enter plwlcl.x.
- 9. In the **yp:** field, enter plwlc2.yp plwlc1.yp.
- 10. In the **ym:** field, enter plwlc2.ym plwlc1.ym.
- 11. Click **Apply** to create the complex curve.

