

Altair HyperGraph 3D 2019 Tutorials

HG3D-3000: Defining Line Plots

altairhyperworks.com

HG3D-3000: Defining Line Plots

In this tutorial, you will learn how to:

- Create line plots from a file
- Create line plots using a math expression

Tools

The **Define Curves** panel can be accessed one of the following ways:

• From the toolbar, click the **Define Curves** icon, *s*.

Or

• From the menu bar, select *Curves > Define Curves*

Curve: Curve 1	Line 💌	Vector:	Source:	File:	Apply
Curve 1		οx	 File 	Туре:	
		0 Y	O Math	Poquest	
		οz	○ Values	s Request	
		0 U			
	-	° V			
Cut Copy Paste	Add	All			

The **Define Curves** panel enables you to edit existing curves and create new ones. New data can be selected from a source file, mathematically defined using the program's curve calculator, or entered as values. The options in the panel change depending on which source is selected. If the source chosen is **Math**, the panel looks as shown below:

Curve: Curve 1	•	Vector:	Source:	Expre	ession	=										Apply
Curve 1	A	ΘX	C File	7	8	9	+	Rar	nge	sin	In	∫ ₀×	freq	PSD	Filter	
		οz	C Values	4	5	6	-	x	у	cos	exp	∛ax	FFT	FRF	Fit	
		ΟU		1	2	3	*	()	tan	log		FFTØ	FRFØ	Curves	
ļ	-	ΟV		+	0	•	/	7	^	П	alog		Window	Hilbert	Functions	
Cut Copy Paste Add		All		E Fr	eeze											

The **Curve** list displays the names of all curves in the active window. Curves can be renamed, added, cut, copied, and *pasted* using the curve list controls.

Exercise: Defining Line Plots.

Step 1: Creating a line plot from a file

- 1. Go to the **Define Curves** panel,
- 2. Click **Add** under the **Curve** list.

A curve labeled **Curve 1** is added to the list.

3. Rename Curve 1 to Line Curve 1 and press ENTER.

The new name is now displayed in the list and in the legend.

- 4. Under **Vector**, select **X**.
- 5. Set the **Source** type as *File*.
- 6. From the dyna folder, select the file nodout.
- 7. Ensure \boldsymbol{X} is selected for the vector.
 - For Type, select Time.
 - For **Request**, select *Time*.
 - For **Component**, select *Time*.
- 8. Under *Vector*, select *Y*.
 - For Type, select Node Data.
 - For Request, select Nodal Point 26742.
 - For **Component**, select **Resultant Displacement**.
- 9. Under *Vector*, select *Z*.
 - For **Type**, select *Node Data*.
 - For Request, select Nodal Point 26742.
 - For Component, Resultant Displacement.
- 10. Click Apply.
- 11. Click **Add** under the curve list to add another curve.
- 12. Repeat steps 4 to 10 choosing *Nodal Point 26766* as the Y and Z Request and *Resultant Displacement* as the Component.
- 13. (Optional) *Plot* for other **Requests** and **Components**.

Step 2: Create a line plot from a math expression.

- 1. Click the **Add Page** icon, 1, to add a page or press the SHIFT and F3 keys.
- 2. Click **Add** under the curve list. A curve labeled **Curve1** is added to the list.
- 3. Rename the curve to Math_curve.
- 4. The new name is now displayed in the list and in the legend.
- 5. For **Source**, select *Math*.
- 6. Under Vector, click All.
- 7. Set X to sin(2*u)*(10.0 + 6*cos(3*u)).
- 8. Set Y to cos(2*u)*(10.0 + 6*cos(3*u)).
- 9. Set Z to 6*sin(3*u).
- 10.Set U to 0:(2*PI):(PI/50).

🛆 All	X
Name:	Math_curve
×	sin(2*u)*(10.0 + 6*cos(3*u))
Y:	cos(2*u)*(10.0 + 6*cos(3*u))
Z:	6*sin(3*u)
Optional:	
U:	0:(2*Pl):(Pl/50)
V:	
	OK Cancel

- 11. Click \boldsymbol{OK} to close the dialog.
- 12. Click **Apply** to create the plot.

