

HyperGraph 3D 2019 Tutorials

HG3D-2020: Data Querying

altairhyperworks.com

# HG3D-2020: Data Querying

In this tutorial, you will learn how to:

- Query data from the surface plot
- Create and use datum planes

#### Tools

The **Coordinate Info** panel can be accessed one of the following ways:

• On the toolbar, click the *Coordinate Info* icon,

Or

• From the menu bar, select *Curves > Coordinate Info* 

The **Coordinate Info** panel allows you to retrieve individual point data on any curve in the active window. When a point on a curve is selected, the point data is displayed on the panel. Using the Coordinate Info panel you can retrieve data from three curve types: 3D line, surface, and waterfall. The panel options change depending on the curve in the active window.

| Find point:<br>Max: X: Y: | Curve: | × | Y | Z        | Add Row      |
|---------------------------|--------|---|---|----------|--------------|
|                           | Slice: |   |   |          | Remove Row   |
|                           | Y:     |   |   |          | Clear Table  |
|                           | Z:     |   |   |          | Export Table |
| Next Curve                |        |   |   | <b>.</b> |              |

The **Datum Planes** panel can be accessed by:

• Clicking the **Datum Planes** icon, 💐, from the toolbar

Or

• From the menu bar, select *Curves > Datum Planes*.

| Datum:  Reference plane  Governmenter | Position Text Attributes Create XY Plot |     |          |    |   |    |      | Apply |
|---------------------------------------|-----------------------------------------|-----|----------|----|---|----|------|-------|
| Cross section  Clipping plane         | Rotate plane about: Location:           | 1   | Max:     | X: |   | Y: |      |       |
| ☐ Transparency                        |                                         | 0.0 | H H      | •  | ► | •  | •    |       |
| Reverse                               | Y=                                      | 0.0 | $\cap$   | •  |   |    |      |       |
|                                       | Include these points: Z=                | 0.0 |          |    |   |    |      |       |
|                                       | O₁ O₂ D₂ H Select O II                  |     | <u> </u> |    |   |    | •    |       |
| Cut Copy Paste Add                    |                                         | I   | ncreme   | nt |   |    | 0.01 |       |

The **Datum Planes** panel allows you to insert reference datum planes to plots.



# **Exercise: Querying Surface Plots**

#### Step 1: Open Session File Curve\_Attributes\_Surface.mvw

- 1. From the menu bar, select *File > Open > Session*.
- 2. Select the file Curve\_Attributes\_Surface.mvw and click Open.



### Step 2: Query XYZ Values Using the Coordinate Info Panel

- Click on the *Coordinate Info* icon, 
  Note that a bubble with the XYZ values is seen in the graphics area.
- Click on the surface to see the XYZ values at that point.
  Note that the panel area displays the XYZ values of the point chosen.
- 3. Click *Add Row* to add an additional row.
- 4. Click on another point on the surface.

The value in the newly added row is updated to that of the new point.



5. Repeat the operation to build a table.

| Y    | Z                                        |
|------|------------------------------------------|
| 0.5  | 0.347746                                 |
| 0    | 1                                        |
| 10.4 | 0.0893036                                |
| 0.1  | 1.78867                                  |
| 0    | 1                                        |
| 6.1  | 1.83371                                  |
|      | Y<br>0.5<br>0<br>10.4<br>0.1<br>0<br>6.1 |

- 6. Click on any one of the rows in the table and then click **Remove Row**.
- 7. Click *Export Table...* and save the table as a DAT file.

### **Step 3: Using Datum Planes as Reference Planes**

- 1. Click the **Datum Planes** panel icon,
- 2. Verify that the **Position** tab is active and the radio button for **Reference Plane** is checked.
- 3. Click *Add* to add a datum plane as a reference plane.

By default, a reference plane is created in the Z plane.

4. Move the slider bar in the panel area to move the reference plane along the Z plane.

Select 💁 🔟

- 5. Click on the view icons to change the orientation of the plane along the X and Y axis respectively.
- 6. Click on the  $\square$  icon to create a plane with three points of your choice.

| Datum: Plane 1                | Reference plane                                                | Position Text Attributes Crea | ate XY Plot                               | Apply |
|-------------------------------|----------------------------------------------------------------|-------------------------------|-------------------------------------------|-------|
| Plane 1<br>Cut Copy Paste Add | C Cross section<br>C Clipping plane<br>Transparency<br>Reverse | Rotate plane about            | Location:<br>X=<br>Y=<br>Z=<br>Select Q I |       |

7. Enter 1 for the X, Y, and Z axis, respectively, under Location.

You can also pick three points from the screen.

- 8. Click *Apply*.
- 9. Click  $\land \forall$  to move the reference plane to the maximum and minimum point in the surface plots, respectively
- 10. Click on the arrows **I** to move to the next/previous point or to the local maximum/ local minimum along the **X** and **Y** axis.



#### **Step 4: Using Datum Planes as Clipping Planes and Plotting Cross Section.**

- 1. Create a Reference plane parallel to the Z-axis by selecting **Rotate plane about X**. Move the slider bar to position the datum plane in the middle of the surface plot.
- 2. Check the radio button for *Clipping Plane* to make it active.
- 3. Activate *Transparency.*

The clipped part of the surface plot appears transparent on the screen.

4. Move the slider bar and note the change in the clipping area from the screen.



- 5. Turn the *Transparency* option off.
- 6. Click the *Create XY Plot* tab.
- 7. Verify that the option for **Place curve on** is set to *New plot*.
- 8. Set Create curve: to Y vs Z.

9. Click on *Plot Data*.



- 10. Click the **Position** tab.
- 11. Move the slider bar to update the position of the clipping plane.

The plot updates simultaneously.

- 12. Click the plot window to make it active.
- 13. Click on the **Fit** button,  $\mathfrak{A}$ , to fit the plot to the window.

