

Altair HyperGraph 3D 2019 Tutorials

HG3D-1000: Defining Waterfall Plots

altairhyperworks.com

HG3D-1000: Defining Waterfall Plots

In this tutorial, you will learn how to create waterfall plots.

Tools

The **Waterfall** panel can be accessed one of the following ways:

From the toolbar, click the Waterfall panel icon,

Or

• From the menu bar, select *Curves > Waterfall*

The **Waterfall** panel allows you to create waterfall plots from XY force response data and input pulses. If a waterfall plot exists in the current window, HyperGraph 3D automatically fills in the default values.

Plot type:	Waterfall slices:	Parameters:		Apply
Frequency	Number:	Sample size: 1024	-	
Time	100	Window function: Hanning	•	Undo
Data curves:	C Step size:	Amplitude type:	•	
Response = 🗠	0.01	Amplitude scale:		
Input =		None	•	
Input vector is in RPM	Contour waterfall	Show all options		

Exercise: Creating Waterfall Plots

Step 1: Open Session File trimmer.mvw and create HyperGraph 3D window

- 1. From the menu bar, select *File > Open > Session*.
- 2. From the 3dplotting folder, select the file trimmer.mvw and click **Open**.
- 3. Click *Close* on the message log that appears.
- 4. Click on the **Add Page**, 1 , button to add a page.
- 5. Select *HyperGraph 3D* from the **Select Application Menu** icon.

Step 2: Create a Frequency versus Time waterfall plot

- 1. Click the **Waterfall** icon, \clubsuit , on the toolbar to enter the panel.
- 2. Verify that **Frequency** and **Time** are the options set under **Plot Type**:
- 3. Click the curve selection icon, $agerine{}_{A}$, in the **Response Field** for **Data Curves**.
- 4. Choose the *Force vs Time Raw* curve.

5. Click *Preview* to view the curve.

- 6. Click *Select*.
- 7. Verify that the curve referenced under **Response** is **p1w2c1**.
- 8. Enter 100 for *Number* under Waterfall slices.
- 9. Check the *Contour waterfall* option.

10. Click **Apply**.

Step 3: Create a Frequency versus RPM waterfall plot

While in the **Waterfall** panel, do the following:

- 1. For **Plot Type:** select *Input Magnitude* instead of **Time** from the pull-down menu.
- 2. Under Data Curves, select RPM vs Time Raw for Response

4. Check the box for *Input vector is in RPM* to scale the RPM to RPS.

5. Click Apply.

6. Click **Undo** to return to the **Frequency vs Time** plot.

Step 4: Create an Order waterfall plot

While in the **Waterfall** panel, do the following:

- For Plot Type: select Order(scaled) instead of Frequency from the pull-down menu.
- 2. Select **RPM vs Time Filtered** for **Input** under **Data Curves**.
- 3. Click *Apply* to create the plot.

4. Click *Undo* to return to the **Frequency vs Time** plot.

